
Distributed Slot Scheduling Algorithm for Hybrid

CSMA/TDMA MAC in Wireless Sensor Networks

Manas Ranjan Lenka∗, Amulya Ratna Swain∗ and Manmath Narayanan Sahoo†

∗ KIIT University, Bhubaneswar, India
†NIT Rourkela, India

Email: {manasy2k3, swainamulya, sahoo.manmath}@gmail.com

Abstract—Wireless Sensor Networks(WSNs) consist of many
self organized sensor nodes to monitor various activities like
temperature, pressure, health condition, intrusion detection, etc.
These sensor nodes mostly sense the events happening around
them, process the sensed data, and send it to the base station
using multiple hops. The base station is connected to the outside
world who wants to access these sensed and processed data.
In WSN, one of the most important challenge is to handle the
collision during data transmission by multiple sensor nodes at
the same point of time. The collision during data transmission
is handled by proper MAC protocol. The MAC protocols for
WSN are broadly categorized into 3 types, i.e. schedule, random,
and hybrid. Among these 3 types of MAC protocols, the hybrid
MAC protocols try to combine the advantage of both schedule
and random based MAC protocols. In this paper, we proposed a
distributed slot scheduling algorithm for hybrid MAC algorithm.
This algorithm mainly focuses on preparing a schedule which
bridges the gap between a feasible and an optimal schedule to
handle the collision during the data transmission. In our proposed
approach, first we find out two-hop neighbors of each node, then
a particular slot is allotted to each node in order to prepare
a feasible schedule using the RD-TDMA algorithm. Finally, the
feasible schedule is fine tuned in a novel way to improve the
efficiency in handling the collision by reducing the number of
allotted slots. The proposed algorithm out performs the existing
RD-TDMA algorithm in terms of number of slots required to
handle the collision. The performance of the proposed protocol
is carried out using Castalia simulator.

Index Terms—Wireless Sensor Network, Media Access Control,
TDMA, CSMA, feasible schedule, correlated contention

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of large number

of independent sensor nodes which collects data from the

surrounding environment, may process the data, and send the

same to the base station(BS) using multi-hop communication.

The BS ultimately sends the received data to the outside world.

WSNs are used in various fields starting from our day-to-

day activities to critical real-time applications such as Home

automation, Health Monitoring, Habitat Monitoring etc.

The source of power in each node of WSN is usually

through battery, and it cannot be recharged from time to time

as the WSN is mostly deployed in hostile environment. In

WSNs, as the battery power is limited therefore one of the

most important goal is to reduce the energy consumption

which ultimately helps in prolonging the life time of the sensor

networks.

In order to reduce the energy consumption, various sources

of energy wastes in WSNs such as Idle Listening, Overhearing,

Control Message Overhead, and Collision [1] [2] need to be

handled in various ways.

Among the above mentioned sources of energy wastes, one

of the important consideration in conserving energy for WSNs

is reducing the collision during communication among the

sensor nodes. Various MAC protocols [1], [2], [3], [4], [5],

[6], [7] has been designed to reduce the collision during data

transmission in WSNs.

Most of the existing slot scheduling algorithms for MAC

protocols in WSN either prepare an optimal schedule to

improve the bandwidth utilization of the channel or a feasible

schedule in quick time to handle the collision during data

transmission. In order to bridge the gap between the optimal

and feasible schedule, in this paper, we propose a distributed

slot scheduling algorithm which will prepare the schedule

in quick time and also reduce the length of the schedule

that minimizes the latency during data transmission. Initially,

a feasible schedule is prepared using RD-TDMA [7] slot

scheduling algorithm. Then, the number of allotted slots are

reduced in a novel way to handle the collision and at the same

time reduce the latency during data transmission.

The rest of the paper is organized as follows. Section II,

briefly illustrates our proposed protocol. Section III, presents

our experimental simulation results and its analysis. Section

IV, finally concludes the paper.

II. PROPOSED ALGORITHM

Our proposed distributed slot scheduling algorithm prepares

a TDMA schedule by going through various phases. In the

first phase, two-hop neighbors of each node is calculated

and the maximum of all the two-hop neighbors is found

out. In the next phase, each node is allotted to a particular

slot in such a way that collision can be handled during

data communication by multiple nodes simultaneously. In the

final phase, the number of allotted slots is reduced so that

performance can be enhanced (i.e. reduction in latency during

data transmission) at the same time collision can be handled

during data communication.

A. Two-hop neighbor Discovery

[Step 1:] At the very beginning, each node broadcasts a one-

hop neighbor-discovery(ND) message to its neighbors.

[Step 2:] The Nodes receiving this one-hop ND message

generate a one-hop ND response message and send it back

978-1-5090-3315-7/16/$31.00 ©2016 IEEE

to the originator node which has generated the one-hop ND

message.

[Step 3:] The originator node stores the node-id of all these

nodes from which it has received the one-hop ND response

message. These nodes forms the one-hop neighbors of the

originator node.

[Step 4:] In due course of time, each node finds their one-

hop neighbors. Then each node starts discovering their two-

hop neighbors by broadcasting a two-hop ND message which

contains it’s own one-hop neighbors list.

[Step 5:] Nodes receiving the one-hop neighbor list populate

it’s two-hop neighbor list by adding the node id of the node

from which it has received the two-hop ND message and the

node ids present in the received one-hop neighbors list.

[Step 6:] After each node finds their two-hop neighbors, then

they broadcast a max two-hop neighbors count message which

contains the total number of two-hop neighbors present at their

own ends.

[Step 7:] A node receives this message will check, whether

the two-hop neighbors count at it’s own end is less than the

received one or not. If it is less then it updates it’s max two-

hop neighbors count and broadcasts a max two-hop neighbors

count message in this network. Finally, the maximum two-hop

neighbors count at all the nodes is found out which helps in

preparing the number of slots to be present in a frame for the

feasible schedule.

B. Allotment of slots

The number of slots in a frame is decided as per the

maximum two-hop neighbors count. Each slot in a frame

can be in one of the four states viz un-allotted, requested,

granted, and allotted. The process for slot allotment proceeded

as follows.

[Step 1:] Initially, each slot is assigned to a “un-allotted”

state. Then, each node randomly selects a slot from the list

of available slots and change the state of the chosen slot to

be “requested”. Finally, it broadcasts a slot allotment request

message to their neighbors which contains the requested slot

number to be allocated for it’s own.

[Step 2:] Nodes receiving this slot allotment request message

can either grant or reject the requested slot. The requested slot

is granted if both of the following conditions are matched.

• The requested slot has not been granted by the receiving

node to any other node.

• The requested slot has not been requested earlier by the

receiving node itself.

[Step 3:] If any of the above condition is matched, then the

receiving node updates the status of the slot to be “granted”,

and then broadcasts a slot grant message to it’s neighbors.

[Step 4:] If a node that receives this slot grant message is the

intended recipient, then it store the node id from which it has

received the message.

[Step 5:] After a certain time period, the node checks whether

it has received the slot grant message from all of it’s one-hop

neighbors or not. If it has received from all it’s neighbors, then

the requested slot is allocated to that node and the status of

the slot is changed to “allotted”. Finally, the node broadcasts a

slot allotment success message to all of its neighbors. In case,

the node has not received the slot grant message from all of

it’s one-hop neighbors, then it updates the status of the slot to

“un-allotted” and broadcasts a slot allotment failure message

to all of its neighbors, and then choose another slot randomly

and continue from step-1 again.

[Step 6:] The nodes receiving the slot allotment success

message updates the respective slot status to be ”allotted”. In

case of failure, the nodes who have received the slot allotment

failure message check if they have given grant to this failure

slot earlier. If so, then these receiving nodes update that slot

status at their own end to “un-allotted“.

According to figure 1, the red color node randomly chooses

the third slot and broadcasts a slot allotment request message

to it’s one hop neighbors. Then all it’s one hop neighbors

send back a slot grant message to it. After receiving the slot

grant message for the requested slot from all of it’s one hop

neighbors, the red color node allocates the slot for him and

broadcasts a slot allotment success message to it’s neighbors.

Finally, nodes receiving this message updates the status of that

slot to be “allotted”.

As per figure 2, the red color node requested the slot

number three to be allocated for it and broadcasts a slot

allotment request message to it’s neighbors. Out of all the

one hop neighbors, two of them have not sent back the slot

grant message because the slot number three at these two

nodes is already in the “allotted” state prior to the receive of

slot allotment request message. After receiving the slot grant

message, the red color node updates the status of the slot to

be “un-allotted“ as it did not receive the slot grant message

from all of it’s neighbors. Hence, it broadcasts a slot allotment

failure message to it’s neighbors. The nodes who have given

grant after receiving the failure message updates the status of

that slot to be ”un-alloted“.

C. Re-allotment of slots

In order to reduce the number of slots to be allotted, the

number of allotted slots are reduced to half of the originally

allotted slots. The process for slot re-allotment proceeded as

follows.

[Step 1:] First the reduced number of slots is calculated (i.e.

the half of the originally allotted slots). Then, each sensor

node checks whether they can be reallotted to a new slot

or not based on their originally allotted slot number and

the calculated reduced number of slots. In case, the allotted

slot number to the sensor node is greater than the calculated

reduced number of slots, then the node allotted to the last slot

is reallotted to the first slot, the last but one slot to the second

slot and so on. After the convergence, all the nodes allotted

to the last slot are reallotted to the first slot, the last but one

slot to the second slot and so on.

[Step 2:] The nodes originally allotted to a slot are known as

the owners of that slot. Due to the re-allotment, some nodes

are reallotted to another slot and these reallotted nodes are

known as the non-owner nodes of the newly allocated slot.

