Distributed Slot Scheduling Algorithm for Hybrid
CSMA/TDMA MAC in Wireless Sensor Networks

Manas Ranjan Lenka*, Amulya Ratna Swain* and Manmath Narayanan Sahoo!
* KIIT University, Bhubaneswar, India
INIT Rourkela, India
Email: {manasy2k3, swainamulya, sahoo.manmath} @ gmail.com

Abstract—Wireless Sensor Networks(WSNs) consist of many
self organized sensor nodes to monitor various activities like
temperature, pressure, health condition, intrusion detection, etc.
These sensor nodes mostly sense the events happening around
them, process the sensed data, and send it to the base station
using multiple hops. The base station is connected to the outside
world who wants to access these sensed and processed data.
In WSN, one of the most important challenge is to handle the
collision during data transmission by multiple sensor nodes at
the same point of time. The collision during data transmission
is handled by proper MAC protocol. The MAC protocols for
WSN are broadly categorized into 3 types, i.e. schedule, random,
and hybrid. Among these 3 types of MAC protocols, the hybrid
MAC protocols try to combine the advantage of both schedule
and random based MAC protocols. In this paper, we proposed a
distributed slot scheduling algorithm for hybrid MAC algorithm.
This algorithm mainly focuses on preparing a schedule which
bridges the gap between a feasible and an optimal schedule to
handle the collision during the data transmission. In our proposed
approach, first we find out two-hop neighbors of each node, then
a particular slot is allotted to each node in order to prepare
a feasible schedule using the RD-TDMA algorithm. Finally, the
feasible schedule is fine tuned in a novel way to improve the
efficiency in handling the collision by reducing the number of
allotted slots. The proposed algorithm out performs the existing
RD-TDMA algorithm in terms of number of slots required to
handle the collision. The performance of the proposed protocol
is carried out using Castalia simulator.

Index Terms—Wireless Sensor Network, Media Access Control,
TDMA, CSMA, feasible schedule, correlated contention

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of large number
of independent sensor nodes which collects data from the
surrounding environment, may process the data, and send the
same to the base station(BS) using multi-hop communication.
The BS ultimately sends the received data to the outside world.

WSNs are used in various fields starting from our day-to-
day activities to critical real-time applications such as Home
automation, Health Monitoring, Habitat Monitoring etc.

The source of power in each node of WSN is usually
through battery, and it cannot be recharged from time to time
as the WSN is mostly deployed in hostile environment. In
WSNs, as the battery power is limited therefore one of the
most important goal is to reduce the energy consumption
which ultimately helps in prolonging the life time of the sensor
networks.

In order to reduce the energy consumption, various sources
of energy wastes in WSNs such as Idle Listening, Overhearing,

Control Message Overhead, and Collision [1] [2] need to be
handled in various ways.

Among the above mentioned sources of energy wastes, one
of the important consideration in conserving energy for WSNs
is reducing the collision during communication among the
sensor nodes. Various MAC protocols [1], [2], [3], [4], [5],
[6], [7] has been designed to reduce the collision during data
transmission in WSNS.

Most of the existing slot scheduling algorithms for MAC
protocols in WSN either prepare an optimal schedule to
improve the bandwidth utilization of the channel or a feasible
schedule in quick time to handle the collision during data
transmission. In order to bridge the gap between the optimal
and feasible schedule, in this paper, we propose a distributed
slot scheduling algorithm which will prepare the schedule
in quick time and also reduce the length of the schedule
that minimizes the latency during data transmission. Initially,
a feasible schedule is prepared using RD-TDMA [7] slot
scheduling algorithm. Then, the number of allotted slots are
reduced in a novel way to handle the collision and at the same
time reduce the latency during data transmission.

The rest of the paper is organized as follows. Section II,
briefly illustrates our proposed protocol. Section III, presents
our experimental simulation results and its analysis. Section
IV, finally concludes the paper.

II. PROPOSED ALGORITHM

Our proposed distributed slot scheduling algorithm prepares
a TDMA schedule by going through various phases. In the
first phase, two-hop neighbors of each node is calculated
and the maximum of all the two-hop neighbors is found
out. In the next phase, each node is allotted to a particular
slot in such a way that collision can be handled during
data communication by multiple nodes simultaneously. In the
final phase, the number of allotted slots is reduced so that
performance can be enhanced (i.e. reduction in latency during
data transmission) at the same time collision can be handled
during data communication.

A. Two-hop neighbor Discovery

[Step 1:] At the very beginning, each node broadcasts a one-
hop neighbor-discovery(ND) message to its neighbors.

[Step 2:] The Nodes receiving this one-hop ND message
generate a one-hop ND response message and send it back

978-1-5090-3315-7/16/$31.00 ©2016 IEEE

to the originator node which has generated the one-hop ND
message.

[Step 3:] The originator node stores the node-id of all these
nodes from which it has received the one-hop ND response
message. These nodes forms the one-hop neighbors of the
originator node.

[Step 4:] In due course of time, each node finds their one-
hop neighbors. Then each node starts discovering their two-
hop neighbors by broadcasting a two-hop ND message which
contains it’s own one-hop neighbors list.

[Step 5:] Nodes receiving the one-hop neighbor list populate
it’s two-hop neighbor list by adding the node id of the node
from which it has received the two-hop ND message and the
node ids present in the received one-hop neighbors list.
[Step 6:] After each node finds their two-hop neighbors, then
they broadcast a max two-hop neighbors count message which
contains the total number of two-hop neighbors present at their
own ends.

[Step 7:] A node receives this message will check, whether
the two-hop neighbors count at it’s own end is less than the
received one or not. If it is less then it updates it’s max two-
hop neighbors count and broadcasts a max two-hop neighbors
count message in this network. Finally, the maximum two-hop
neighbors count at all the nodes is found out which helps in
preparing the number of slots to be present in a frame for the
feasible schedule.

B. Allotment of slots

The number of slots in a frame is decided as per the
maximum two-hop neighbors count. Each slot in a frame
can be in one of the four states viz un-allotted, requested,
granted, and allotted. The process for slot allotment proceeded
as follows.

[Step 1:] Initially, each slot is assigned to a “un-allotted”
state. Then, each node randomly selects a slot from the list
of available slots and change the state of the chosen slot to
be “requested”. Finally, it broadcasts a slot allotment request
message to their neighbors which contains the requested slot
number to be allocated for it’s own.

[Step 2:] Nodes receiving this slot allotment request message
can either grant or reject the requested slot. The requested slot
is granted if both of the following conditions are matched.

« The requested slot has not been granted by the receiving

node to any other node.

o The requested slot has not been requested earlier by the

receiving node itself.

[Step 3:] If any of the above condition is matched, then the
receiving node updates the status of the slot to be “granted”,
and then broadcasts a slot grant message to it’s neighbors.
[Step 4:] If a node that receives this slot grant message is the
intended recipient, then it store the node id from which it has
received the message.

[Step 5:] After a certain time period, the node checks whether
it has received the slot grant message from all of it’s one-hop
neighbors or not. If it has received from all it’s neighbors, then
the requested slot is allocated to that node and the status of

the slot is changed to “allotted”. Finally, the node broadcasts a
slot allotment success message to all of its neighbors. In case,
the node has not received the slot grant message from all of
it’s one-hop neighbors, then it updates the status of the slot to
“un-allotted” and broadcasts a slot allotment failure message
to all of its neighbors, and then choose another slot randomly
and continue from step-1 again.

[Step 6:] The nodes receiving the slot allotment success
message updates the respective slot status to be “allotted”. In
case of failure, the nodes who have received the slot allotment
failure message check if they have given grant to this failure
slot earlier. If so, then these receiving nodes update that slot
status at their own end to “un-allotted®.

According to figure 1, the red color node randomly chooses
the third slot and broadcasts a slot allotment request message
to it’s one hop neighbors. Then all it’s one hop neighbors
send back a slot grant message to it. After receiving the slot
grant message for the requested slot from all of it’s one hop
neighbors, the red color node allocates the slot for him and
broadcasts a slot allotment success message to it’s neighbors.
Finally, nodes receiving this message updates the status of that
slot to be “allotted”.

As per figure 2, the red color node requested the slot
number three to be allocated for it and broadcasts a slot
allotment request message to it’s neighbors. Out of all the
one hop neighbors, two of them have not sent back the slot
grant message because the slot number three at these two
nodes is already in the “allotted” state prior to the receive of
slot allotment request message. After receiving the slot grant
message, the red color node updates the status of the slot to
be “un-allotted as it did not receive the slot grant message
from all of it’s neighbors. Hence, it broadcasts a slot allotment
failure message to it’s neighbors. The nodes who have given
grant after receiving the failure message updates the status of
that slot to be “un-alloted*.

C. Re-allotment of slots

In order to reduce the number of slots to be allotted, the
number of allotted slots are reduced to half of the originally
allotted slots. The process for slot re-allotment proceeded as
follows.

[Step 1:] First the reduced number of slots is calculated (i.e.
the half of the originally allotted slots). Then, each sensor
node checks whether they can be reallotted to a new slot
or not based on their originally allotted slot number and
the calculated reduced number of slots. In case, the allotted
slot number to the sensor node is greater than the calculated
reduced number of slots, then the node allotted to the last slot
is reallotted to the first slot, the last but one slot to the second
slot and so on. After the convergence, all the nodes allotted
to the last slot are reallotted to the first slot, the last but one
slot to the second slot and so on.

[Step 2:] The nodes originally allotted to a slot are known as
the owners of that slot. Due to the re-allotment, some nodes
are reallotted to another slot and these reallotted nodes are
known as the non-owner nodes of the newly allocated slot.

© e covaquzoraomssu wezzsts | @sumsqzior © e covaquzoraomssu wezzsts
@ ;¢ yob LeiEupoL2 oy Leq cojoL Loge gednis2ieq 20r @ ;¢ yob LerBupoL2 o Leq cojoL Loge
—_ —_
g 2lOTOMIGUEWIGZESES (-8][0Esq 20F oy 2l0TS[OMIGUEWIGZESES
2lorBaur wezeaBs . 2l0F Baur Wezests
- Wijofsq 2of -

2l0FsjjonueUL 2riccez2 W622aRs 210£S]|0REUE {316 W228Bs

Fig. 1: Successful slot allotment

[Step 3:] After the re-allotment of slots, data transmission is
carried-out to check which non-owner nodes are in collision
during the same. In order to detect collision before data
transmission each non-owner sensor node checks whether the
medium is free or busy using CSMA. Once the node finds the
medium is busy then collision will happen if the same node
will transmit data along with the owner nodes.

[Step 4:] Hence, those non-owner nodes which are in collision
are reallotted back to a new slot.

As per Figure 3, originally nine slots are allotted for the
whole WSN to handle collision during data transmission.
Then, the number of slots are reduced to five i.e. half of the
originally allotted slots. During data transmission, out of the
five allotted slots two of them i.e. slot number two and four are
in collision. Finally, the reallotted nodes to slot number two
and four are reverted back to two new slots i.e. six and seven.
Hence, the final number of slots allotted to handle collision
become seven.

The whole process has been carried out once at the begin-
ning to prepare the schedule. This schedule will handle colli-
sion during simultaneous data transmission and the reduction
in the length of the schedule (as compared to the feasible
schedule) allows to transmit data with reduced latency.

III. SIMULATION EXPERIMENTS AND RESULTS

The performance of our proposed algorithm is carried out
using Castalia simulator [8]. In this simulation, the nodes are
deployed in uniform random manner. For this simulation, the
number of nodes deployed are varied from 50 to 1000 with a
fixed as well as varying density. Various sensor node param-
eters such as power level, energy consumption, transmission
rate, etc. are taken into consideration as per the information
given in cc2420 data sheet[9] and TelosB data sheet[10].

Figure 4 shows the average two-hop neighbors to the ac-
tual two-hop neighbors. Here, the average two-hop neighbors
remain almost 50% of the actual two-hop neighbors. As the
average two-hop neighbors are almost half of the actual two-
hop neighbors, hence reduction of the originally allocated
slots to it’s half will improve the performance. Our proposed
algorithm proves the same.

Figure 5 shows the number of slots in collision after re-
allotment. Here, it shows that the number of slots in collision

Fig. 2: Failure in slot

L L L,]
.| e
i
[J— 4
i
v v
L L
| [
cavrsqzor . OUBILS||A |jofsq 2o s 110062 L6-S||OM6q LLOW 8 20
pedriezrsq 2o . BeqNCsq 2oFe Spfel 16- o sUoLpeL. 2of
g|opusLy -
| [rnr—" llosuse > ou-omust 1oges Le-sorreq
S 811065 21052 PSCK fo fUs OLIRILE| Zjof

allotment Fig. 3: Slot re-allotment

100

Average two-hop neighbor nodes —s— "
Maximum two-hop neighbor nodes —»—

80 -

, -

Number of two-hop neighbor nodes

20

200 500 1000
Number of nodes

50 100

Fig. 4: With fixed node density, average two-hop neighbors
compared to maximum two-hop neighbors

100

Number of reallocated slots —»—
Number of realls d slots in collision —=—

80

60

40 +

Number of reallocated slots

20

200 500 1000
Number of nodes

50 100

Fig. 5: With fixed node density, number of slots in collision
after re-allotment as compared to the total number of slots
after re-allotment

increases with the increase in number of sensor nodes. With
increase in number of sensor nodes, the number of nodes allot-
ted to a particular slot increases. This leads to the possibility
of increase in collision due to the increase in number of sensor
nodes.

Figure 6 shows a comparison of the number of allotted
slots, re-allotted slots, and number of slots in collision after
re-allotment. It shows that, the number of slots which are
in collision almost remains the same with varying area. As

120

Number of allocated slots ——
Number of reallocated slots —=—
Number of reall d slots in collision —=—

100

80

60

Number of slots

40 |

20

-\.—_4.,——\‘/-

100100 120*120 140*140 1607160 180*180 200*200
Area

Fig. 6: With varying node density, comparison of the number
of allotted slots, re-allotted slots, and slots in collision after
re-allotment

Average time spent(in sec) —— "
Average energy spent(in joule) —=—

0.8
0.6
0.4

02 | ”\\—/

0 * * *
50 100 200 500 1000
Number of nodes

Time and Energy spent

Fig. 7: With fixed node density, time and energy spent for
re-allotment of slots

the number of nodes remains the same hence, the chance of
collision also remains the same with varying number of nodes.

Figure 7 shows the time and energy spent for re-allotment
of slots. This result shows that, the average time and energy
spent almost remains the same as the number of node increases
as our proposed algorithm is distributed in nature.

Figure 8 shows a comparison of the number of slots allotted
in our proposed algorithm with the RD-TDMA to handle
collision during data transmission. The results shows that, the
number of slots allotted to handle the collision in our proposed
algorithm is less as compared to the RD-TDMA algorithm i.e.
our proposed algorithm performs better than RD-TDMA in
terms of number of slots allotted to handle collision.

IV. CONCLUSION

In this paper, we proposed a distributed slot scheduling
algorithm for hybrid MAC to handle collision during commu-
nication. In the first phase of the proposed algorithm, two-hop
neighbors are calculated for every node and then maximum
of all the two-hop neighbors is found out which will became
the number of slots to be present in the feasible schedule. In
the next phase, re-allotment of slots is done by reallocating
the nodes from the last slot to the first slot, last but one slot

100

Proposed algorithm —e—
RD-TDMA algorithm —=—

80 -

60

40 +

Number of slots allocated per frame

20

50 100 200 500 1000
Number of nodes

Fig. 8: With fixed node density, number of slots allocated in
our proposed algorithm as compared to the RD-TDMA
algorithm

to the second slots and so on. Finally, after re-allotment, the
number of slots in collision is found out and accordingly the
final schedule is prepared. This reduces the number of slots
allocated for handling collision. The efficiency of the proposed
algorithm has been evaluated with fixed as well as vary-
ing node density. Our proposed algorithm is compared with
an existing distributed slot scheduling algorithm called RD-
TDMA. This comparison shows that the proposed algorithm
outperforms the RD-TDMA algorithm in terms of number of
slots in the schedule to handle the collision.

REFERENCES

[1] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in Proceedings of the IEEE Infocom,
USC/Information Sciences Institute. New York, NY, USA: IEEE, June
2002, pp. 1567-1576.

[2] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac

protocol for wireless sensor networks,” in Proceedings of the lIst

International Conference on Embedded Networked Sensor Systems, ser.

SenSys '03. New York, NY, USA: ACM, 2003, pp. 171-180.

1. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-mac: a hybrid

mac for wireless sensor networks.” IEEE/ACM Trans. Netw., vol. 16,

no. 3, pp. 511-524, 2008.

[4] 1. Rhee, A. Warrier, M. Aia, J. Min, and M. Sichitiu, “Adaptive

distributed randomized tdma scheduling for clustered wireless sensor

networks,” in International Conference on Wireless Communications,

Networking and Mobile Computing, 2007, pp. 2688-2691.

1. Slama, B. Jouaber, and D. Zeghlache, “Priority-based hybrid mac for

energy efficiency in wireless sensor networks.” Wireless Sensor Network,

vol. 2, no. 10, pp. 755-767, 2010.

S. Zhuo, Y.-Q. Song, Z. Wang, and Z. Wang, “Queue-mac: A queue-

length aware hybrid csma/tdma mac protocol for providing dynamic

adaptation to traffic and duty-cycle variation in wireless sensor net-

works,” 2012.

[7] A. Bhatia and R. Hansdah, “Rd-tdma: A randomized distributed tdma
scheduling for correlated contention in wsns,” 2014.

3

=

[5

=

[6

=

[8] “Castalia a simulator for wireless sensor networks,”
http://castalia.npc.nicta.com.au/pdfs/Castalia User Manual. pdf.

[9] “Cc2420 data sheet,” http:/fwww.stanford.edu/class/cs244e/
papers/cc2420.pdf.

[10] “Telosb data sheet,” http://www.xbow.com/Products/ Prod-

uct_pdf_files/Wireless_pdf/TelosB_Datasheet.pdyf.

