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Abstract—It is well known that in-place update index, un-
ordered log structured index and ordered log structured index
are three typical data organizations which are designed to meet
different workload requirements respectively and wildly used in
big data storage systems. Differentiated workload requirements
in different phase of the data lifecycle, e.g. various types of
data are injected into the big data storage systems in the write
optimized manner, then they are needed to be read in the
read optimized manner for analysis, lead to data organization
transformation(data transformation for short). However, the sim-
ple mixture of foreground data injection and background data
transformation causes serious disk contention. Frequent disk head
seeks result in low disk throughput, and not only prolong the
data transformation process, but also increase foreground data
injection latency.

In this paper, we propose Workload Shifting, a novel log-
structured design that shifts background data transformation
away from the foreground data injection. Compared with con-
ventional RAIDO disk array, Workload Shifting effectively isolates
background data transformation and foreground data injections,
avoids the disk contention between them to boost their perfor-
mance. We have implemented Workload Shifting prototype on one
multiple disks based disk array. Extensive experimental evalua-
tion results show that compared with conventional RAID0 disk
arrays, Workload Shifting can avoid disk contention and speed
up both data injection and data transformation significantly.

Keywords—data organization transformation, disk contention,
log-structured, disk array, big data

I. INTRODUCTION

In big data era, massive data are generated by various
types of clients, and converge together into the massive data
storage systems. Then data are read from the storage systems
and analysed by various data analysis tools and models,
e.g. MapReduce, to produce useful and valuable information,
which is used in business intelligence, decision supporting
and so on. Data organization is important for storage systems
because it largely determines the efficiency of data operations,
such as read, write, scan and search. The data organization
can be categorized into three classes: in-place update index,
unordered log structured index, and ordered log structured
index. B+tree, LFS (Log Structured File System [16]) and
LSM-tree (Log Structured Merge tree [15]) are representative
of the in-place update index, unordered log structured index
and ordered log structured index respectively. B+tree and its
variants provide worst-case write latency due to the small and
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random updates to disks, but has high read and scan perfor-
mance, while LFS writes data to disk immediately without
any sorting, and typically has excellent write throughput, at
the expense of poor scan and read performance. LSM-tree is
different from both of them, it weighs read performance against
write performance. Initial evaluation results show that the read
and scan performance of B+tree is higher than both LFS and
LSM-tree. As well as, the write performance of LFS is higher
than both B+tree and LSM-tree. Therefore, we’d better adopt
LFS and B+tree in the data injection phase and data analysis
phase respectively.

In fact, LSM-tree can be regarded as one of the data
transformation schemes. Key value pairs are written to the
MemTable in LFS manner and then the unordered key value
pairs are transformed to sorted key value pairs via compaction.
Although LSM-tree has been popularly used in the Google
LevelDB [1], which is the local storage engine for BigTable
[17], and other storage systems, including HBase [20], Hyper-
dex [19], PNUTS [18], and Cassandra [21]. We can find that
there exists serious write amplification problem with LSM-tree
and the throughput of LevelDB is only several mega bytes
per second under common SATA disks environments. How to
efficiently transform data from write oriented LFS manner to
read and scan oriented B+tree manner is one of the critical
problems in big data storage systems.

There are two advantages of LFS manner used in the
foreground data injection. First, it is well-known that LFS
typically has excellent write throughput and can speed up
the process of data injection. Second, at the full speed of
the underlying media, LFS can support sequential or random
write streams from multiple applications, so it can avoid
disk bandwidth contention among foreground applications.
However, when data transformation is introduced to improve
the read and scan performance of storage systems there exists
serious disk bandwidth contention between the foreground data
injection and background data transformation. Specifically, the
random reads and writes incurred by data transformation often
interfere with foreground data injection. This problem is also
common in disk array, such as RAIDO.

In this paper, we propose Workload Shifting which sep-
arates the foreground data injection from background data
transformation and distributes them into different hard disks,
in order to avoiding the disk contention. In details, we inject
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Fig. 1: The conventional data transformation scheme based on
RAIDO

data into one hard disk for some time and then shift the data
injection task to another hard disk. All the disks take turns to be
responsible for the data injection task. Meanwhile, background
data transformation task is scheduled to handle the injected
data. By this way, the injected data can be transformed as
soon as possible, so it can facilitate the consequent read and
scan operations.

We implement Workload Shifting based on one disk ar-
ray with multiple disks. We also conduct extensive real ex-
periments to evaluate the performance of Workload Shifting
compared with the conventional data transformation schemes.
Extensive experimental results demonstrate that Workload
Shifting can avoid disk contention and speed up both data
injection and data transformation effectively.

The rest of this paper is organized as follows. The back-
ground will be presented in Section II. In Section III, we
will discuss the design of Workload Shifting in details. The
performance evaluation will be described in Section IV. We
will also present related work in Section V and conclude this
paper in Section VI by summarizing our main contributions.

II. BACKGROUND

The conventional data transformation scheme based on
RAIDO array is showed in Figure 1. From Figure 1 we
can see that the log-structured design converges lots of se-
quential and random write streams from multiple applications
into sequential write streams and triggers data transformation
periodically. Although there does not exist disk contention
among foreground writes due to the log-structured design,
there are still two types of disk contention in the conventional
data transformation scheme based on RAIDO array. One is
that according to the description above, data transformation
is a background process, it will compete disk resources with
foreground data injection. The disk contention disrupt not only
data injection but also data transformation. The other is that
there are both reads and writes during the data transformation,
i.e. transferring data organization from log structured manner
to B+tree manner. So when both reads and writes fall in one
device, there exists disk contention between them, and the disk
contention may slow down data transformation.

We conduct experiments on a 6-core machine with 4 disks
configured as a RAIDO array to show the problems. We use
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Fig. 2: The impact of disk contention between data injection and
data transformation
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Fig. 3: The throughput of LevelDB under different workloads

log-structured designs to process data injection, as well as,
trigger data transformation periodically. The key size and value
size are respectively set as 16B and 100KB . We keep the
volume of data set as 10GB. We mainly focus on the execution
time of data injection, in order to guarantee the data reliability,
we use sync write to inject data.

Since both foreground data injection and background data
transformation run on top of RAIDO array concurrently, there
exists serious disk contention between them. As the Figure 2
shows the execution time of data injection with data trans-
formation and data injection without data transformation are
813.6s and 522.6s respectively. Due to the mixture I/Os of
foreground data injection and background data transformation,
the execution time of data injection with data transformation
increases 55.7% compared with that of data injection without
data transformation. So we can apparently make the conclusion
that disk contention degrades the performance of foreground
data injection significantly.

In addition, we conduct another experiment on a RAID0O
array consisting of 4 disks to show the efficiency of LSM
tree which can be regarded as one of the data transformation
schemes. In the experiment, we run Google LevelDB based
on a local filesystem EXT4 to observe its throughput. Note
that Google LevelDB is one representative implementation of
LSM tree. The workloads of this experiment can be categorized
into two classes according to the type of key: sequential key
workload and random key workload. The key size is set as 16
bytes and the value size is set as 1000KB, 100KB and 10KB
respectively. Similarly, the volume of data set is kept as 10GB.

Figure 3 shows the throughput of LevelDB under two dif-



ferent workloads. For any value size under two different work-
loads, its throughput is limited to less than 32MB/s. The reason
has two aspects. On the one hand, foreground data injection
uses sync write to do a log for data reliability, unfortunately,
sync write limits the performance of data injection. On the
other hand, background data transformation and data injection
interfere with each other. In Figure 3, the throughput under
sequential key workload is distinctly larger than the throughput
under random key workload. The reason is that there is no
compaction (i.e. data transformation) in the background under
sequential key workload. However, background compaction
is triggered under random key workload, and background
compaction leads to significant extra disk reads and writes
which disturbs the foreground data injection I/O activities.
The different throughput of LSM tree between the sequential
key workload and random key workload demonstrate that
the background compaction I/Os and foreground write I/Os
interfere with each other significantly.

In conclusion, there are two challenges in the conventional
big data systems. One is how to separate foreground data in-
jection from background data transformation. The other is how
to separate data transformation reads from data transformation
writes. In the following section, we will describe Workload
Shifting step by step based on the above two challenges.

III. WORKLOAD SHIFTING DESIGN
A. The basic model of Workload Shifting
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Fig. 4: The process of basic Workload Shifting. D; presents the i*"
disk, T} presents the 4" logging period, and R/W represents read
and write respectively.

1) Data Injection: Multiple writes are organized as log-
structured manner by Workload Shifting to avoid the disk
contention among foreground write I/Os naturally. Then, in-
stead of treating multiple disks as an entire device(i.e. RAIDO
array), Workload Shifting uses the disks separately to separate
the foreground data injection workloads from background data
transformation workloads and assigns them into different hard
disks to avoid the disk contention. Specifically, Workload
Shifting injects data into one hard disk for some time and
then shifts the data injection task to another hard disk. All the
disks take turns to be responsible for the data injection task.
Meanwhile, background data transformation task is scheduled

to handle the just injected data as shown in Figure 4. By
this way, the just injected data can be transformed as soon
as possible and it can facilitate the consequent read and scan
operations. For instance, D; is used as the on-duty log disk in
logging period Ty firstly(i.e. all of the foreground key value
pairs are written to D;). Similarly, when entering logging
period T3 foreground I/Os fall into D, and key value pairs
are written to D3 during 75. This process continues until data
injection has been finished.

2) Data Transformation: A new data transformation pro-
cess is triggered when foreground data injection rotates to a
new disk and it will not finish until all the key value pairs of the
corresponding disk have completed data transformation. For
example, the data transformation process for D1 is triggered
immediately when the foreground data injection rotates to Ds.
The only responsibility of data transformation process is to
reorganize key value pairs from log structured manner into
B+tree manner in the same disk. So the data transformation
involves two steps named read data which is organized as log-
structured and write data into B+tree. As the Figure 4 shows,
only when all the key value pairs of the corresponding disk
have been updated in D1, this data transformation process can
be terminated. Similarly, the data transformation process for
D, is triggered immediately after Ds is selected as the on-
duty log disk.

Compared to the conventional data transformation scheme
based on RAIDO array, the major improvement of the basic
model of Workload Shifting is separating foreground data
injection from background data transformation. However, data
transformation reads are mixed together with writes on the
same disk, so the current basic model of Workload Shifting
can not avoid the disk contention between data transformation
reads and writes. One weakness of Workload Shifting is that
it can not make good use of RAIDO’s parallelization to
speed up read and write performance, but from the following
experiments, we can know that the overheads resulting from
disk contention is more serious than performance improvement
from multiple disks’ parallelization, hence the weakness of
Workload Shifting is negligible.

B. The enhanced model of Workload Shifting

In order to avoid the disk contention between the read
and write I/Os of background data transformation in the basic
model of Workload Shifting which is shown in Figure 4, we
propose the enhanced model of Workload Shifting as shown in
Figure 5.

The enhanced model of Workload Shifting is similar with
the basic model shown in Figure 4(a) and 4(b), the main
difference is the separation of data transformation read and
write I/Os. In Figure 4(b), data transformation read I/Os and
write I/Os are in the same disk. Unlike the basic model of
Workload Shifting, the enhanced model of Workload Shifting
reads the data from one disk and writes them into another disk
to separate the read I/Os and write I/Os. Note that in Figure
4(a) and 5(a), the logging period and data transformation
period are the same under our assumption(the cycle parts).
Our assumption of the logging period and data transformation
period is ideal, however in actual scenes, logging period and
data transformation period can not be completely synchro-
nized. In consequence, we analyze some typical assumptions as
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Fig. 5: The process of enhanced Workload Shifting

follows to validate the feasibility and effectiveness of Workload
Shifting.

C. Analysis of Workload Shifting

1) Ideal alternation of disk stages: As shown in Figure
6, there are four stages in every disk of Workload Shifting
named Log, Read log, Write B+tree, and Idle. Table I gives
the detailed description about the four stages.

TABLE I: The meaning of four stages

Write foreground data as log-structured manner,
and once the log size of one disk is reached

Log the threshold value, Workload Shifting changes
the disk to log and triggers the data transformation
Read log Read data from one disk during

the transformation process
Write data to B+tree into another
disk during the transformation process
Idle The disk is idle, and nothing to do

Write B+tree

From the Figure 6, we can see the progress of Log, Read
log and Write B+tree will not disturb with each other by
carefully adjusting the time period of Log, Read log, Write
B-+tree and Idle, hence the disk contention among them can be
eliminated perfectly. However, it is difficult for us to coordinate
the steps.
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Fig. 6: The ideal Workload Shifting

2) Acceptable alternation of disk stages: Figure 7 de-
scribes another situation of Workload Shifting.
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Fig. 7: The acceptable Workload Shifting

Although the progress of Log is slower than that of the
others from the Figure 7(a) (i.e. the logging period is longer
than the data transformation period), data transformation are
triggered when the logging rotates to another disk. As shown
in Figure 7(b), there is no disk contention.
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Fig. 8: The bad Workload Shifting

3) Bad alternation of disk stages: From the Figure 8(b),
one can see that Read log overlaps with Write B+tree on
the same disk, also the overlapping of them leads to disk
contention because the progress of Log is always faster than
the others that as shown in Figure 8(a) (i.e. the logging period
is shorter than the data transformation period). We can get that
Workload Shifting can not avoid disk contention from Figure
8

Through the above analysis, in the ideal situation like
the ideal alternation of disk stages, Workload Shifting can
avoid not only disk contention between data injection and
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data transformation but also disk contention between data
transformation reads I/Os and write I/Os. Actually, in the real
situation, there still exists disk contention in Workload Shifting
such as Bad alternation of disk stages due to the different
logging period and data transformation period.

Moreover, it is very difficult to fullfill the requirement
of the ideal alternation of disk stages, so we focus on the
acceptable alternation of disk stages. In the implementation of
the acceptable alternation of disk stages, we use sync write
instead of no sync write to prolong the logging period. In our
opinion, there are some remarkable advantages of using sync
write as follows. The first one is Increasing reliability. Using
sync write ensures that the previous data will not lost when
the power is off as well the method is common in conventional
storage systems (e.g. LevelDB, Berkeley DB). Data in memory
can be recovered under the power off condition via this
method. However, using no sync write obviously leads data
in memory to be lost if the power goes off. Second, reducing
energy consumption. As shown in Figure 7(b), there exists idle
stage in some disks. During the idle stage, Workload Shifting
sets the disk to the IDLE state in order to save power. On the
contrary, conventional RAIDO array keeps the disks ACTIVE
all the time. The third one is eliminating disk contention that
can speed up not only foreground data injection but also
background data transformation. Here, we conduct a simple
experiment to validate the problem about no sync write. In the
experiment, we mainly focus on the execution time of data
injection which uses no sync write and data transformation
under different value size(1KB, 10KB, 100KB), also different
data volume of data injection and data transformation are
applied into the experiment(SMB, 50MB, 100MB, 200MB).

As the Figure 9 shows, the tendency of data injection and
data transformation in execution time is different when the
value size and log size change, especially when the log size is
5SMB and 50MB. Also, when the log size becomes larger, the
data injection period is shorter than the data transformation
period, hence, there exists disk contention which is similar
with Bad alternation of disk stages.

1V. EVALUATION
A. Evaluation Methodology

1) Baseline for Comparison: We use two systems as the
main baseline for comparison. One is LevelDB which is
used for the efficiency of data transformation. The other is a
conventional log layered over RAIDO (called Log+RAIDO) as
shown in Figure 1, which is used for comparing the reduction
of redundant time resulting from disk contention. So we mainly
compare the time gap in two types of experiments. One is the

execution time of data injection without data transformation.
The other is the execution time of data injection and data
transformation. Besides, we compare the energy consumption
of Workload Shifting with that of Log+RAIDO.

2) Evaluation Platform: We evaluate the performance of
all the systems using a 6-core server with 16GB of DDR3
RAM. In order to eliminate the impact of memory, we limit
memory size to 2GB. A disk array consisting of up to 10 disks
is adopted in our evaluation. Table II shows the detailed server
hardware and system software configuration information.

3) Workload Generation: We use YCSB [13] to generate
key value workloads. The workloads in our evaluation can be
categorized into two classes according to the type of key:
sequential key workload and random key workload. Since
the main design goal of Workload Shifting is to avoid disk
contention between data injection and data transformation,
therefore sequential key workload and random key workload
have no read operations, just write operations for use in the
main evaluation and sensitivity studies to show how different
design parameters may impact the performance of Workload
Shifting.

TABLE II: The detailed hardware configuration information

CPU Type
#Cores
#Threads
Memory

Intel R Xeon E5645
6 cores@2.4G
12 threads
16GB, DDR3 (Just limit it to 2GB in our experiments)
12 disks
one disk for system, others for data
Disk Model
Seagate STI000NMOO01 1
Capacity
ITB
Rotational Speed
7200RPM
Avg.Seek/Rotational Time
8.5ms/4.2ms
Sustained Transfer Rate
150MB/s
oS CentOS release 6.1 (2.6.32)

Disk

B. Main Evaluation

We conduct experiments on a disk array consisting of 4
disks, and use workloads with 16 bytes keys and different
value size (the volume of data set is kept as 10GB) to evaluate
the performance of Workload Shifting. For Log+RAIDO and
Workload Shifting, the default log size is set to be SMB.

First, we compare the efficiency of LSM-tree with Work-
load Shifting under random key workload. From the Figure
10, one can see that the throughput of Workload Shifting is
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38.6MB/s, 31.1MB/s and 6.3MB/s respectively under different
value size, similarly, the throughput of LevelDB is 4.7MB/s,
2.5MB/s and 2.2MB/s. Statistically, the throughput of Work-
load Shifting is larger than that of LevelDB. The reason is that
on one hand, the write amplification caused by the compaction
of LSM tree results in lower throughput; on the other hand,
there exists disk contention during the LSM tree compaction.
Here, we do not present the throughput of LevelDB and Work-
load Shifting under sequential key workload, because the key
value pairs are ordered and does not need data transformation,
so both of their throughput are the same with each other.
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Fig. 11: The impact of data transformation on Log+RAIDO and
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Second, we examine the impact of data transformation
on Log+RAIDO and Workload Shifting. We use a random
workload in which the key size and value size are set as
16 bytes and 100KB respectively. The result is shown in
Figure 11. We can get the following two conclusions. For the
one, data transformation disrupts the performance of systems
due to the disk resources competition with data injection.
For instance, the execution time of Log+RAIDO increases
from 522s to 813s. For Workload Shifting, the execution
time increases from 320s to 329s. Statistically, Workload
Shifting minimizes the overheads caused by disk contention.
The execution time of Workload Shifting increases by only
2.7%, however, Log+RAIDO increases by 55.7%. The reason
is that Workload Shifting uses disks separately to separate
the foreground data injection workloads from background data
transformation workloads and assigns them onto different hard
disks to avoid the disk contention. For the other, whether it
is under data injection with data transformation or not, the
execution time of Log+RAIDO is larger than that of Workload
Shifting. The reason is that in Log+RAIDO, multiple disks
are viewed as an entire logical device to do read and write
I/O operations, when foreground data injection do the sync
write, every disks in RAIDO array will perform this process
concurrently, and it will disrupt the performance of foreground

data injection. However, due to using the disks separately, there
is only one disk to do the sync write at any time in Workload
Shifting.

Overall, Workload Shifting has a high-efficiency data trans-
formation scheme and eliminate the disk contention between
data injection and data transformation.

C. Sensitivity Studies

According to the above analysis and the design of Workload
Shifting, the following three key factors have great impact on
the performance and energy consumption of Workload Shifting,
named the number of disks, the log size and the value size.
The precondition of Workload Shifting is that the number of
disks must be greater than 3 so that Workload Shifting can
speed up both data injection and data transformation with
minimal interference. In addition, the log size is also important.
It determines the starting time and execution time of data
transformation, and unreasonable log size may result in extra
overheads.

To examine the impacts of the number of disks, the log
size and the value size to the Workload Shifting, we conduct
a series of sensitivity studies about performance and energy
consumption of Workload Shifting. Here, we mainly focus on
the time gap in two types of experiments. one is the execution
time of data injection without data transformation. The other
is the execution time of data injection and data transformation.
From the results of these two experiments, we can get the the
rate of increase in execution time under different configurations
of LevelDB, Log+RAIDO, Workload Shifting.
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Fig. 12: The impact of the number of disks

1) The number of disks: To examine the impact of the
number of disks, we conduct experiments on different numbers
of disks (4, 6, 8, 10) in a disk array with 16B keys and 100KB
values (the volume of data set is 10GB), and the log size is
set to be SMB.

Figure 12(a) and 12(b) shows the impact of the number of
disks on the execution time. From the Figure 12(a), we can
know that the execution time of Log+RAIDO and LevelDB
decrease as the number of disks increases because the two
systems make good use of RAIDO’s parallelization which can
speed up write and read performance, however, the execution
time of Workload Shifting keeps unchanged due to using the
disks separately. As shown in the Figure 12(b), we can also
get the following conclusions. First, the rate of increase in
execution time of Log+RAIDO is consistently greater than that
of Workload Shifting, no matter what the number of disks is. It
mainly results from the disk contention between data injection



and data transformation, just like the result of Figure 11.
Second, increasing the number of disks can reduce the rate of
increase in execution time of Log-RAIDO, because more disks
means faster read and write performance of RAIDO, so that
data injection and data transformation can be accelerated to
reduce the overheads of disk contention, but the rate of increase
in execution time of Workload Shifting remains unchanged due
to using the disks separately.

2) Log size: To evaluate Workload Shifting with different
log size, we conduct experiments on different log size (SMB,
50MB, 100MB, 200MB) in a disk array configured with 4
disks. The key size and value size are set as 16 bytes and
100KB respectively. We keep the volume of data set as 10GB.
Here, we do not present the rate of increase in execution
time of LevelDB since that execution time and Log size have
nothing to do with each other for LevelDB.
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Fig. 13: The impact of log size on the rate of increase in execution
time

Figure 13 shows the impact of log size on the rate of
increase in execution time. As shown in Figure 13, we can get
the following several conclusions. First, the rate of increase
in execution time of Workload Shifting is smaller than that of
Log+RAIDO due to the impact of disk contention. Second, as
the log size expands, the rate of increase in execution time
of Log+RAIDO and Workload Shifting keep unchanged. The
reason is that from the Figure 7, one can see that the logging
period is larger than the data transformation period, hence
the execution time is still determined by the foreground data
injection, including Log+RAIDO. From another perspective,
we can know that no matter what the log size is, the execution
time of Workload Shifting and Log+RAIDO remain unchanged
(331.3s and 813.6s respectively).

3) Value size: To examine the sensitivity of LevelDB,
Log+RAIDO and Workload Shifting on the value size, we
conduct experiments on a 4-disk disk array with the value
size of 100KB, 50KB and 1KB respectively.

Figure 14 shows the impact of value size on the execution
time. From the Figure 14, we can get several observations
as follows. First, due to the elimination of disk contention,
the execution time of Workload Shifting is smaller than the
other two systems. Second, as the value size expands, the
rate of increase in execution time of Workload Shifting keeps
unchanged due to the elimination of disk contention. Third, the
rate of increase in execution time of Log+RAIDO decreases as
the value size expands. The reason is that within the same
data volume, the smaller value size, the larger the number of
key value pairs, so it results in more logging period. The gap
between data injection period and data transformation period

will increase and then the overheads of disk contention in
Log+RAIDO will decrease.
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D. Energy Consumption

In this section, we approximately evaluate the energy
consumption of Log+RAIDO and Workload Shifting by the
execution time.
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Figure 15(a) shows the execution time of Log+RAIDO and
Workload Shifting, as shown in Figure 15(a), the execution
time of Log+RAIDO is larger than that of Workload Shifting.
In order to estimate the energy consumption, we make some
assumptions as follows: 1) a single disk has two states, named
ACTIVE and IDLE; 2) during the ACTIVE state, the energy
consumption of disk is a constant W; 3) during the IDLE state,
the energy consumption of disk is 0. Based on our fundamental
assumptions, we can estimate the energy consumption of
Log+RAIDO and Workload Shifting associated with execution
time.

Since Log+RAIDO treats multiples disks as an entire
logical device for use, during the execution, all of these
disks are kept ACTIVE state. So the energy consumption of
Log+RAIDO E can be got by

E=NxWxT )]

where N denotes the number of disks in disk array, T de-
notes the execution time of Log+RAIDO. For estimating the
energy consumption of Workload Shifting, it is different from
Log+RAIDO. The reason is that as shown in Figure 7(b), one
can see that there exists IDLE state during the execution, so the
energy consumption of Workload Shifting meets the following
formula:

E<NxWxT 2)

Obviously, from the Figure 15(a), the execution time of
Log+RAIDO is 813s and it is larger than that of Workload



Shifting (i.e. 329s), even if their execution time are the same
with each other, the energy consumption of Workload Shifting
is still less than that of Log+RAIDO. The reason is that during
the execution, Log+RAIDO keeps all the disks ACTIVE. In
contrast, some disks are kept IDLE during the execution in
Workload Shifting. Above all, Workload Shifting consumes less
energy than Log+RAIDO.

In addition, as the Figure 15(b) shows, data transformation
makes different impacts on the increase of energy consump-
tion. In Log+RAIDO, the execution time is prolonged due to
the disk contention that means more energy are consumed.
So compared to Log+RAIDO without data transformation, the
energy consumption of Log+RAIDO with data transformation
increases by 55.69%. While in Workload Shifting, it avoids disk
contention to keep the execution time essentially unchanged,
so the energy consumption of Workload Shifting increases less
than 2.65% due to the IDLE state existing in some disks,
compared to Workload Shifting without data transformation.

V. RELATED WORK

Data transformation is a method to improve write, read,
scan performance [8] [11]. For instance, Chameleon [8] intro-
duce data transformation into the systems to solve the problem
that typical big data systems not only employ one or more
extra dedicated disks to reorganize data into another data
organization, but also use sequential data transformation which
incur extremely long time and significant energy consumption,
but Chameleon does not consider disk contention between
application writes and data transformation.

Disk contention is increasingly a significant problem, as
applications are forced to co-exist on machines and share
physical disk resources. Existing solutions to mitigate the
effects of disk contention revolve around careful scheduling
decisions, either spatial or temporal. For instance, one solu-
tion to minimize interference involves careful placement of
applications on machines [2] [3]. However, this requires the
cloud provider to accurately predict the future I/O patterns
of applications. Additionally, placement decisions are usually
driven by a wide number of considerations, not just disk I/O
patterns; these include data/network locality, bandwidth and
CPU usage, migration costs, security concerns, etc. A different
solution involves scheduling I/O to maintain the sequentiality
of the workload seen by the disk array. Typically, this involves
delaying the I/O of other applications while a particular ap-
plication is accessing the disk array. However, I/O scheduling
sacrifices access latency for better throughput, which may not
be an acceptable trade-off for many applications.

Workload Shifting is mainly inspired by Gecko [7], which
is a novel log-structured design that eliminates read-write
contention by chaining together a small number of drives into
a single log, effectively separating the tail of the log (where
writes are appended) from its body. One one hand, although
Gecko focuses on eliminating disk contention that is the same
with Workload Shifting, the disk contention of Gecko mainly
results from application writes and garbage collection [5] [6]
which is different from Workload Shifting; on the other hand,
the function of garbage collection and data transformation are
different. Garbage collection turns dirty segments into clean
ones by copying live blocks from the dirty segment into the

current segment and skipping the rest, and data transformation
changes the data organization. In Workload Shifting, the data
organization is changed from log-structured to B+tree.

VI. CONCLUSION

In this paper, we propose Workload Shifting, which sepa-
rates the foreground data injection workloads from background
data transformation workloads and distribute them onto differ-
ent hard disks to avoid the disk contention. Specifically, we
inject data onto one hard disk for some time and then shift
the data injection task to another hard disk. All the disks take
turns to be responsible for the data injection task. Meanwhile,
background data transformation task is scheduled to handle
the just injected data. By this way, the just injected data can
be transformed as soon as possible and thus can facilitate the
consequent read and scan operations. Furthermore and most
importantly, Workload Shifting can efficiently speed up the data
transformation with minimal interference with foreground data
injection workloads.
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