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Abstract—The data scale in many data centers is growing
explosively with emerging applications and usages of big data
technologies. Data distribution is a key issue in large-scale
distributed storage systems to place petabytes of data or even
beyond, among tens or hundreds of thousands of storage devices.
In the meantime, heterogeneous storage systems, such as those
having devices with hard disk drives (HDDs) and storage class
memories (SCMs), have become increasingly popular for mas-
sive data storage due to balanced performance, capacity, and
cost. Current data distribution algorithms can achieve efficient,
scalable, and balanced mapping, but do not distinguish different
characteristics of heterogeneous devices well. This paper presents
a novel data distribution algorithm called SUORA (Scalable and
Uniform storage via Optimally-adaptive and Random number
Addressing), to take full advantage of heterogeneous devices.
SUORA is a pseudo-random algorithm that uniformly distributes
data cross a hybrid and tiered storage cluster. It divides hetero-
geneous devices, maps them onto different buckets and assigns
them to various segments in each bucket. A pseudo-random and
deterministic number sequence is generated to map data among
segments and devices. Data movement is performed for achieving
better read throughput while keeping load balance according
to data hotness and bucket threshold. With considering distinct
characteristics of heterogeneous storage devices well, the SUORA
algorithm achieves a highly efficient adaptive data distribution
for data centers and heterogeneous storage systems.

Index Terms—Data distribution algorithm; data placement;
data management; heterogeneous storage; data centers

I. INTRODUCTION

With a variety of data center services, Internet applications,
and emerging new technologies such as cloud computing and
Internet of things, data type and amount are growing with
an amazing speed. A large number of semi-structured and
unstructured data continue to spring up, leading to the “big
data” era. Massive amount of data require effective methods
to manage them for meeting demands from different appli-
cations. Although various policies are presented for metadata
management [1], [2], [3], [4], data placement has become more
important than ever as it concerns the capacity, scalability, and
performance of the storage system in data centers.

Different from traditional scenarios, most big data storage
systems often use a heterogeneous setup to store massive data.
Hard disk drives (HDD) are the current dominant storage
devices, but are notorious for long access latency and being
failure prone. The popular storage class memory (SCM),
such as solid state drives (SSDs) and phase change memory
(PCM) [5], provide a new promising storage solution with

TABLE I: A comparison of characteristics of memory and
storage technologies

Media Access Time (µs) Endurance1 Norm. Cost2

DRAM <0.01 >1E+16 200
PCM (<0.055) Read, (>0.15) Write 1E+9 24
SSD (<45) Read, (>200) Write 1E+5 6
HDD <5000 >1E+16 1

1 Endurance indicates average write times.
2 Normalized average cost per GB based on HDD.

high bandwidth, low latency, and mechanical-component-free,
but with inherent limitations of small capacity, short lifetime,
and high cost. Table I shows a comparison of characteristics
of memory, HDD, and SCM storage devices. Design and
development of an innovative hybrid storage to take full
advantage of heterogeneous device characteristics is a trend
for big data storage solution.

The data distribution strategy is mainly to solve the problem
of how to place data (files, objects, and blocks) among differ-
ent devices (racks, nodes, and disks). It often needs to meet
some objectives such as fair data distribution, efficient data
migration, and load balance. For instance, GPFS [6] divides
the file into equal sized blocks and places consecutive blocks
on different disks in a round-robin fashion. It improves the
I/O throughput with file parallelism but lacks scalability when
the node number increases. Consistent hashing functions [7]
or pseudo-random algorithms [8] are popularly used in storage
systems to efficiently map data or objects to devices, such as
in Dynamo [9], Sheepdog [10], and Ceph [11]. They achieve
data balance and reduce the amount of data migration when
node addition or removal happens. Although these strategies
can dynamically distribute data on backend storage, they
still lack effective methods to distinguish different devices
in a hybrid cluster and place data on them according to
their distinct characteristics (capacity, throughput, cost, etc.).
Some algorithms address data placement in a heterogeneous
environment but they either focus on file stripe layout [12],
[13] or data locality [14] to achieve improved performance,
or essentially adopt traditional hash functions among devices
with homogeneous capacity and weight [15], [16], [17].

Existing data placement algorithms can effective distribute
data, but do not meet the requirements well in a heterogeneous
environment. In addition to conventional objectives, an ideal
algorithm for hybrid storage systems should achieve additional
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goals. First, it should provide a uniform data distribution by
considering distinct characteristics of heterogeneous devices.
It should combine the performance of SCMs with the capacity
and economic efficiency of HDDs. Second, it is desired to
achieve optimally-adaptive placement among devices to reduce
data migration when device addition or removal happens.
Third, data hotness is an important factor to be considered.
Since part of data are frequently read, they should be placed in
the devices with better performance. Last but not the least, time
and space complexity are important considerations, too. Less
calculation time and lower memory footprint will help speed
up big data applications on the system with limited resources.

In this paper, we propose a new data distribution algorithm
called SUORA (Scalable and Uniform storage via Optimally-
adaptive and Random number Addressing), to deal with chal-
lenges and to achieve additional goals in an heterogeneous
environment as discussed above. SUORA is a pseudo-random
algorithm that uniformly distributes data across a hybrid,
tiered storage cluster. Different from conventional approaches,
SUORA constructs a scalable and unified storage with combi-
nation the capacity and performance of different devices. The
contribution of this study includes:

• We propose an innovative methodology for distributed
data placement among heterogeneous devices to take
advantages of their distinct characteristics.

• We design a novel pseudo-random algorithm that ef-
fectively and uniformly distributes data cross a hybrid
and tiered storage cluster. Combining hotness awareness,
the algorithm achieves an adaptive data placement and
enhanced read throughput.

• We conduct extensive analysis and evaluation on data dis-
tribution and the impact on overall system performance.
We also compare the proposed SUORA algorithm with
representative distribution algorithms including consistent
hashing, CRUSH, and ASURA.

The rest of this paper is organized as follows. Section
II discusses related work. Section III describes the SUORA
algorithm. Section IV analyzes the SUORA algorithm and
presents the evaluation results. Section V summarizes this
research and outlines further possible work.

II. RELATED WORK

Numerous active studies have been conducted in recent
years on distribution algorithms for data storage.

Stored table management. To establish relations between
data and nodes, a stored table is widely adopted in file systems,
such as in GFS [2] and HDFS [3]. In table management,
combinations of data and storage nodes are memorized in
a management table. When accessing the data, the table is
searched and the corresponding node is located. Stored table
management can easily distribute data among devices, but it
requires a large table for lots of data. For example, an HDFS
cluster with 6.4 PB data volume with default 64MB block size
and 3 replica requires about 72GB memory, which includes
the inode information the block belongs to and the datanodes
that store the block. Such a large table would require huge

amounts of memory. Besides, if only management nodes know
that table, every storage node must access the management
nodes for data access. Thus, the management nodes become
a performance bottleneck.

Hash functions. Hash functions rely on hash methods and
specialized algorithms to determine the node corresponding to
any data. A simple method to distribute data in a balanced
way is round-robin (RR) assignment and the similar improved
solution [18]. While these methods are easily to implement,
unfortunately there is a large amount of data migration for
re-hashing the data when device removal.
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Fig. 1: The mapping of consistent hashing

There have been numerous distributed hash table algorithms
and implementations proposed over the years [19], [20], [21].
Consistent hashing [7] algorithm is widely used in distributed
systems [9], [10], [22], [23]. It is based on hash functions to
construct a hash ring for nodes and map the data on the ring.
To achieve better data balance, virtual nodes are applied to
distribute data uniformly. The node has more than one hash
value and is assigned on the ring with multiple positions and
ranges. When a node is added or deleted in the ring, only
the data nearby its range will be affected. Figure 1 shows
the mapping of consistent hashing, in which each node has
a virtual node to balance the placement. Although consistent
hashing reaches nearly ideal data load balance and optimal
data movement when the node scale changes, it is mainly
designed for a homogeneous environment without considering
distinct characteristics of different nodes.
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Fig. 2: Function selection of Straw Buckets in CRUSH [24]

Another typical algorithm is CRUSH [15], which is based
on RUSH [25] family algorithms and used for data placement



in Ceph [11]. CRUSH is a scalable pseudo-random, data dis-
tribution function designed for distributed object-based storage
systems. It divides the cluster into four types of buckets,
in which each bucket uses different hash functions. CRUSH
provides more flexible data mapping by adopting various
buckets and functions in an hierarchical cluster. In the function
selection of straw buckets, CRUSH draws a straw of random
length for each item in the bucket and selects the node with the
longest straw to store data. As shown in Figure 2, Data3 will
be placed on NodeA as NodeA has the largest hash number
for the data. It delivers desired data movement between nested
items when modified. Although CRUSH provides uniform data
placement in a hierarchical cluster, it lacks effective measures
to distinguish the device heterogeneity in the buckets.

Hybrid method. Numerous algorithms have been proposed
in an attempt to address data placement in an heterogeneous
environment [14], [16], [17], [26], [27]. SPOCA [28] is
a stateless and optimally-consistent addressing algorithm to
place data in a content distribution network (CDN). Each front-
end server is assigned a segment of the hash space in a number
line proportional to its capacity. The SPOCA routing function
uses a hash function to map the request by its name to a
point in the line. As not every point in the hash space maps
to a front-end server, the result of the hash function may be
hashed again till the request lands in an assigned segment.
Figure 3 shows a sample assignment of the SPOCA hash map,
where a data object is initially hashed to an empty space, but
when hashed again, it is assigned to segment1. The ASURA
algorithm [24] follows the similar idea of SPOCA. It assigns
nodes to multiple segments in a number line according to
the nodes’ capacity. For storing data, the ASURA algorithm
generates pseudo-random numbers within a range till one lies
within a segment that has been mapped to a server. The
ASURA algorithm achieves a trade-off between scalability and
efficiency by extending or shrinking the line length for node
addition or removal. Although these algorithms can effectively
distribute data among heterogeneous devices according to their
capacity, they ignore other important characteristics such as
throughput of different devices.

segment0 segment1 segment2 segment3

Hash (data ID)Hash (Hash(data ID))

0 1 2 3 4
Hash space

Fig. 3: A sample assignment of the SPOCA hash map

III. THE SUORA ALGORITHM

The SUORA algorithm introduced in this paper distributes
data among heterogeneous devices by combining the perfor-
mance of SCMs with the capacity and economic efficiency
of HDDs. It is inspired by the SPOCA [28] and ASURA
[24] algorithms, but is more flexible and scalable by taking
full advantage of device characteristics. Different from these

two existing algorithms, the SUORA algorithm divides het-
erogeneous devices into buckets and manages them in a tiered
architecture. It distributes data among devices according to
both their capacity and performance. It essentially generates a
unified storage management for a heterogeneous environment
in that the data is distributed among devices with optimally-
adaptive mapping.

A. Algorithm Model

Generally speaking, the SUORA algorithm is designed to
reconcile two competing goals: improving the read throughput
by making full use of the performance benefits of SCMs and
keeping load balance to achieve capacity and economy effi-
ciency of HDDs. To achieve these two goals, SUORA divides
heterogeneous devices into different buckets and assigns them
to various segments in each bucket. It uses pseudo-random
functions to effectively distribute data among segments and
buckets. To improve the read performance, SUORA migrates
data from HDDs to SCMs in accordance with data hotness. It
tends to minimize the computation time and data movement
when device addition or removal happens.

We define a multiple dimension-like model in the heteroge-
neous cluster for SUORA. It divides heterogeneous storage
devices into different types of buckets and considers each
bucket as a dimension. The bucket represents devices with
similar characteristics, such as HDDs or SSDs. Each bucket is
associated with a number line that consists of various segments
in which one device is assigned to one or more segments.
The segment length for a device is calculated according to
the device capacity, discussed in Section III(B). Supposing
in a heterogeneous cluster, the storage devices are divided
into m buckets {b0, b1, ..., bm−1}. For the bucket bi, there
are n segments

{
si0, si1, ..., si(n−1)

}
with their segment

length
{
li0, li1, ..., li(n−1)

}
. Given a data ID x, SUORA

first selects the bucket and then utilizes a series of pseudo-
random number generators to map the data on one segment in
the bucket. A hash function f(x, e) is used to generate random
numbers in the range [u, w), where e is the seed, and u and w
are lower and upper limit of distribution, respectively. It gen-
erates a random number sequence R⃗ = {r0, r1, ..., rn−1}
for the data until it is mapped to one segment. When making
replication, SUORA will output multiple buckets and segments
for replica placement. The frequently accessed data will be
moved between buckets according to bucket threshold values.
The threshold value for each bucket {v0, v1, ..., vm−1} can
be predefined or set according to data access patterns. SUORA
migrates the hot data to devices with higher throughputs to
improve the I/O performance.

Figure 4 shows the model of the proposed SUORA al-
gorithm. As shown in the figure, there are multiple buckets
from HDD0 bucket b0 to SCM1 bucket b6, which represent
devices with higher performance in the clockwise direction. In
each bucket, the devices are assigned to segments according
to their capacity. The entire storage system can be extended
by adding buckets and devices. Initially, all data and replicas
are placed in various segments across buckets. If a data
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Fig. 4: Model of SUORA algorithm. The threshold vi is a
limit number for hot data movement among buckets.

item has only one replica, it is placed in the first bucket,
HDD0 bucket b0 in the figure; otherwise, SUORA selects rep
buckets for replications with the replica number rep. When
making replication, SUORA places the first replica on the
bucket with lower performance and larger capacity, such as
HDD buckets. The rest replicas will be placed to different
buckets clockwise according to their performance, as shown
in Figure 4 from SSD buckets to SCM buckets. A random
number sequence R⃗ is generated for each data till it fits one
segment in the bucket. It can be seen that data x1 and data
x2 have three replicas that are placed from HDD1 bucket
to SSD1 bucket and from PCM bucket to SCM1 bucket,
respectively. When a data item is frequently read and becomes
hot, it will move among buckets. Each bucket has its threshold
with the values {v0, v1, ..., v6}. The threshold indicates a
limit number for the current bucket, in which the data will
move from a previous bucket to it in clockwise direction if the
data’s hotness number h exceeds the threshold. For example,
the data in HDD0 bucket will move to HDD1 bucket if
the data’s hotness value h is larger than v1. The data can
be mapped in segments of the new bucket according to the
same R⃗. As the frequently read data are placed in devices
with higher performance, such an approach can significantly
improve the read throughput for the storage system.

Our SUORA algorithm and model differ from using faster
storage devices as multi-level storage cache in two-fold. First,
it is not an inclusive setting in which the data in higher level
of storage cache hierarchy is a subset of that of lower level.
The SUORA algorithm considers different characteristics of
heterogeneous devices and achieves uniform data distribution.
Second, in a multi-level storage cache design, all writes to
a lower level in the hierarchy will go through intermediate
cache levels (SSDs or SCMs), which can reduce the lifetime of
SSDs or SCMs. With the algorithm model discussed above, we
introduce the SUORA algorithm design and implementation in
the rest of this section. It can achieve scalable and flexible data

TABLE II: Node assignment for buckets and segments
Node Bucket Capacity Assigned Segments and Range

A b0 1TB (s00, 0, 1)

B b0 1.5TB (s01, 1, 2), (s02, 2, 2.5)

C b0 0.8TB (s03, 3, 3.8)

D b1 0.6TB (s10, 0, 1)

E b1 0.3TB (s11, 1, 1.5)

F b1 0.8TB (s12, 2, 3), (s13, 3, 3.3)

placement via the pseudo-random distribution and reduce data
migration when device addition or removal happens.

B. Data Distribution Algorithm

The SUORA algorithm divides heterogeneous devices into
buckets and places data among the buckets. For convenience
and simplicity, we use two buckets to illustrate the design of
the algorithm. Suppose the storage devices are a hybrid cluster
with nodes equipped with HDDs and SSDs, there are several
steps in the algorithm for data distribution.

First, the nodes are divided into two buckets in opposite
directions: HDD bucket b0 and SSD bucket b1. Each bucket
is associated with a number line containing the nodes with
similar characteristics.

Second, all nodes in the bucket are assigned to segments
in the number line. The segment begins with the point of an
integer number with the maximal length set to 1. Each node
is assigned to one or more segments considering its capacity
through dividing it by a capacity parameter p, which can be
predefined. When the segment length of a node exceeds one
segment, it is assigned to a new consecutive one with the
smallest segment number in the number line. The assignment
of segments for storage nodes is performed when the system
starts up or nodes are added or removed. At starting up,
the segments are assigned through the overall capacity of
the node. During data placement, the data will be distributed
proportionally in different segments. When node addition, the
segment length of the new node will be adjusted according to
the remaining capacity of existing nodes. It aims to deal with
the situation that new storage nodes are added for extending
the total capacity. Table II and Figure 5 show an assumed
system and the corresponding mapping of nodes and segments.
For example, (s00, 0, 1) means that node A is assigned to
segment s00 in bucket b0 with length range l00(0, 1). The
segment length of each node is computed by the formula with
the p being 1TB in b0 and 0.6TB in b1.

Segment length =
Node capacity

p
(1)
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Fig. 5: Mapping of nodes and segments
Third, the data are distributed among nodes with pseudo-

random hash functions. Supposing one replica is desired for



the data and all items are placed in the HDD bucket b0 initially.
As there may be gaps between nodes in the segment (for the
segment length is different or the node may be removed),
a random number sequence in a given range is generated
according to the data ID till it fits the range of one segment.
Algorithm 1 details the initial data distribution in SUORA.

Algorithm 1 Initial data distribution in the first bucket b0
INPUT: data ID x, segment number n, seed e;

1: segment[n] = segment array
2: val ⇐ hash(x, e)
3: while x does not belong to any segment do
4: for i = 0; i < n; i++ do
5: if val ∈ segment[i] range then
6: segment[i] ⇐ x
7: node assigned to segment[i] ⇐ x
8: end if
9: end for

10: val ⇐ hash(x, e)
11: end while

When the data are placed in the HDD bucket b0, they are
mapped to nodes according to their hash values. Figure 6
shows the initial distribution, in which four data items with
IDs 1 to 4 belong to different segments. With the pseudo-
random generators, the random number sequence R⃗ of each
data item is shown as below. The numbers are generated until
the value matches one segment in the number line of b0.
R⃗data1 = 4.2, 0.9
R⃗data2 = 2.7, 1.6
R⃗data3 = 4.8, 2.8, 2.1
R⃗data4 = 3.9, 4.6, 3.5

1 2 3 4

0

(1.5) (3.3)(3.8) (2.5)

1234Data

b0

4 3 2 1

b1

s03 s02 s01 s00 s11 s13s10 s12

Fig. 6: Initial distribution in HDD bucket

At last, data distribution is automatically adjusted between
the HDD and SSD buckets according to the hotness and bucket
threshold. The node assigned to each data may change with
different access patterns. The frequent read data will be moved
from b0 to b1 when its hotness exceeds the value v1. When
migrating from the HDD to SSD bucket, a data item is mapped
to the segment according to the same random number sequence
R⃗. Figure 7 shows the placement of data before and after
their hotness reaches a threshold. From the figure, it can be
seen that data1 and data2 with hotness value exceeding the
threshold are moved. With the previous generated R⃗, the first
mapped segment of them in b1 is s10 ((r⃗1 = 0.9 for data1)
and s12 (r⃗0 = 2.7 for data2)), respectively. If no random
number matches any segments, new numbers will be generated
subsequently until they fit one.

As the data access frequency varies, the hot data tends to
move to the bucket with higher performance. On the other
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Fig. 7: Data adjustment for hot data

hand, the data may be migrated to the bucket with lower
performance and larger capacity if there is no storage space in
current bucket. By this way, the SUORA algorithm achieves
an adaptive mapping by combining the performance of SCM
with capacity and economy of HDDs. It ensures load balance
and reduces the overhead for recalculation with the same
random number sequence R⃗ when mapping one data.

C. Hotness and Data Movement

Numerous methods or functions can be used for hotness
computation [29]. It is not the focus of this study to address
which one is the best. To identify the hot data, one method
can be used is the Bloom-filter method, i.e. to use a hotness
table to compute and store hotness number for the data. The
hotness table is an array which keeps the read count of each
data item. When a data item is read each time, its ID will be
hashed to index in the table and increase the corresponding
read counter by one. For reducing the hash collision, multiple
hash functions can be used to map data ID in the hotness table.

Besides data movement between the HDD bucket and SSD
bucket, the data may be migrated when nodes are added or
removed. For each bucket, data movement only occurs inside
it when the storage scale is changed. When adding a new
node, if there is a random number in the R⃗ pointing to the
new segment prior to the current segment, the data move to
the new segment. Otherwise, the data remain in its original
position. When removing a node, new random numbers are
generated for data on it to be moved to other nodes. Figure 8
shows data movement when node addition and removal occurs
after the placement described in Figure 6(b). In Figure 8(a),
there are two nodes s04 and s14 added in b0 and b1 with each
occupying one segment length l04(4, 4.7) and l14(4, 4.5),
respectively. Data1 and data4 move because their random
numbers R⃗ (r⃗0 = 4.2 for data1 and r⃗1 = 4.6 for data4)
fall into the new segments when the new nodes are added. In
Figure 8(b), node C (segment s03) and node E (segment s11)
are removed from buckets b0 and b1. It can be seen that data4
placed in the segment s03 moves to the segment s00 with a
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Fig. 8: Data movement when node addition and removal occur

new random number r⃗3 = 0.8 as its R⃗ does not fall into any
current segment. Such an approach ensures load balance and
reduced data migration.

D. Random Number Functions
SUORA uses the pseudo-random function to generate a

random number sequence R⃗ for each data till it falls into one
device. It is based on the data ID x and seed e to generate
the R⃗ in a given range [u, w). The pseudo-random number
generator has the homogeneity characteristics as described in
[24].

With device addition or removal in the bucket, the range
of R⃗ may change to fit segments as the segments cover a
wider or narrower area. Simultaneously, the hot data may be
migrated from one bucket to another with different segment
lengths. Different from ASURA, our algorithm extends or
shrinks the number range by multiple pseudo-random number
generators among buckets. Each generator uses different seeds
to generate R⃗ in a range. When the number in R⃗ is larger
or less than the given range, it will be substituted by other
numbers in the corresponding range. The order of the original
random numbers remains unchanged, which ensures a nearly
homogeneous distribution in the number line. Suppose the
number line of b1 in Figure 5 is extended from [0, 4) to [0, 8)
and [0, 12) for twice. Data5 has its initial R⃗1 and is placed
in s01 of b0. When it is moved to b1 due to hotness, there is
no a matching number to map its segment. Then two other
random number sequences are generated as below to extend
the range for fitting segments in b1.
R⃗1data5 = 3.9, 1.6 ∈ [0, 4)
R⃗2data5 = 7.8, 1.4, 5.8 ∈ [0, 8)
R⃗3data5 = 11.6, 2.3, 10.1, 3.6, 8.2, 4.5 ∈ [0, 12)
Combining these three random number sequences, the final

R⃗ in range [0, 12) for Data5 is as below. Among them,
number 7.8 and 5.8 come from R⃗2 and 3.9 comes from R⃗1.
S⃗data5 = 11.6, 7.8, 10.1, 3.9, 8.2, 5.8
By this way, the random number sequence can be extended

to different segments and buckets for distribution. When the

device is removed and the random number is shrunk, only
unnecessary pseudo-random number generators and sequences
are eliminated. It ensures the scalability of data placement
when the device scale changes.

IV. EVALUATION

In this section, we present the evaluation results of the
proposed SUORA algorithm by comparing it with typical data
distribution algorithms, including consistent hashing [7], straw
buckets in CRUSH [15], and ASURA [24]. The evaluation
was conducted with trace-based simulations, similar to the
evaluation mechanism in the CRUSH and ASURA studies.
The trace-based evaluation mechanism is also widely used in
many other studies. The evaluation and comparison primarily
focus on the new SUORA algorithm and existing consistent
hashing, CRUSH, and ASURA algorithms. There is no trace-
based simulation and comparison with the SPOCA algorithm
because the SPOCA algorithm is primarily used for CDN.
Additionally, the ASURA algorithm represents the core idea of
the SPOCA algorithm for data distribution in storage systems.

A. Algorithm Analysis

Many existing distribution algorithms can provide scalable
mappings and pseudo-equally data distribution. But they lack
an effective method to place data in a heterogeneous envi-
ronment. SUORA is mainly designed to take advantage of
heterogeneous devices while maintaining the desired features
of distribution algorithms. We evaluate different algorithms
based on the analysis from four aspects as described below.

1) Computation time. Suppose there are total u nodes
and v virtual nodes, the time complexity of the device
initialization and data distribution of consistent hashing are
O((u+ v)× log(u+ v)) and O(log(u+ v)), respectively with
a balanced binary search tree management (mainly for looking
up a node). The straw buckets algorithm in CRUSH does not
initialize device configuration and can make a data placement
during runtime, in which the time complexity is O(u). For
ASURA and SUORA algorithms, their calculation time for
device initialization can be ignored as they simply compute
the segment length with device capacity. Both of them achieve
O(1) for data distribution as the maximum expectation number
of times that random numbers need to be generated to fit a
segment depends on a constant value [24]. For SUORA, it
maintains the hotnesss number additionally. But the time is
negligible as the hotness number can be located and counted
directly in the hotness table with the index generated by hash
functions at runtime.

The calculation time of device initialization is stable as the
process is only performed once with the configured storage.
When distributing data, the calculation time of consistent
hashing and straw buckets algorithms are increased logarith-
mically and linearly, respectively with the addition of nodes.
For consistent hashing, more virtual nodes indicate higher
data balance among devices but result in more calculation
time. Although optimizations can reduce the expected run
time of a hash computation to O(1) [7], they result in a high



TABLE III: Analysis evaluation of different algorithms
Algorithm

Computation time
Memory usage

Uniform distribution Adaptive placement
Device initialization Data distribution Homogeneous Heterogeneous Device changes Hot data

Consistent
hashing

Poor
O((u+v)×log(u+v))

Fair
O(log(u+v))

Good
O(u+v)

Poor
Double variability

Poor
By near capacity

Excellent
Minimal data move

Poor
Ignore

Straw
buckets in
CRUSH

Excellent
Negligible

Poor
O(u)

Good
O(u)

Good
Single variability

Poor
By near capacity

Excellent
Minimal data move

Poor
Ignore

ASURA /
SPOCA

Excellent
Negligible

Good
O(1)

Good
O(u)

Good
Single variability

Fair
By capacity

Excellent
Minimal data move

Poor
Ignore

SUORA Excellent
Negligible

Good
O(1)

Good
O(u+ ϵ)

Good
Single variability

Excellent
By capacity, throughput,

cost, etc.

Excellent
Minimal data move

Excellent
Adaptive
migration

cost to migrate data when nodes change. Unlike consistent
hashing and straw buckets, SUORA and ASURA algorithms
keep an invariable time for data distribution whenever the
node scale changes. But ASURA lacks an effective method to
distribute data amongst heterogeneous devices, which is the
key advantage of our proposed algorithm.

2) Memory consumption. To distribute data, the algorithm
needs to keep relevant information in memory. For consistent
hashing, it will maintain node and virtual node ID or hostname
and their hash values, in which the space complexity is
O(u+v). Straw buckets algorithm only memorizes n node ID
and the hash value can be calculated on the fly. In ASURA
algorithm, the node ID and its segment length are kept to
map data. The random number sequence can be generated
when necessary, in which the space requirement is O(u). The
SUORA algorithm places data on multiple buckets, in which
each bucket maintains different device and segment informa-
tion. Besides, SUORA maintains read counters in the hotness
table. The table memory can be preallocated with limited size
as the proportion of hot data is small in storage systems. Thus,
the memory requirement of SUORA is O(u+ ϵ), where O(ϵ)
is the memory consumption for the hotness table.

3) Uniform distribution. Current algorithms can provide
uniform distribution in a homogeneous environment, but not in
a heterogeneous environment. Consistent hashing is a distance-
based algorithm, which assigns an address to each node and
assigns the data to the node with the address closest to its
hash value. It treats each node as the same one and provides
a fair data placement. As the hash numbers of nodes and
virtual nodes on a ring have variability, as do those of data, the
consistent hashing suffers from double variability for distribu-
tion. The other three algorithms use hash values of nodes or
pseudo-random numbers to map data among devices. They all
achieve better uniform distribution with single variability. In a
heterogeneous environment, it may result in data unbalances or
data skew if distinct features of different devices are not well
considered. For example, the HDD with large capacity may
have not enough data while the SSD with high throughput has
lots of unfrequent access data. Consistent hashing and straw
buckets algorithms can approximately consider node capacity
by adjusting virtual node numbers or hash values. The ASURA
algorithm can adapt the segment length to reflect the node
capacity. Although they consider one factor for heterogeneous
devices, other device characteristics such as throughput and

TABLE IV: The specification of devices in the cluster
Device name Bucket

type
Capacity

(GB)
Average throughput

(MB/s)
Raw WD hard disk b0 4000 95
Raw Seagate hard disk b1 2000 176
WD Red RAID5 with 4 disks b2 1000 263
Samsung 850 EVO b3 512 540
Intel P3500 b4 400 1800

cost are not measured. Different from them, the SUORA
algorithm divides heterogeneous devices into buckets and
segments to distinguish their capacity and throughput. It can
achieve better uniform data distribution by taking advantages
of various device characteristics.

4) Adaptive placement. All algorithms can avoid unneces-
sary data movement when node addition or removal happens.
Among them, only the SUORA algorithm considers the hot
data and migrates them among buckets to achieve an adaptive
placement for heterogeneous devices.

Table III summarizes the analysis evaluation and the com-
parison of different algorithms.

B. Algorithm Performance

This subsection focuses on understanding the performance
of different algorithms. Except consistent hashing, the device
initialization time of other algorithms is negligible. Unlike
hash functions, the ASURA and our proposed algorithm adopt
pseudo-random generator to map data among devices. As the
random number can be considered as a hash number from a
specified seed, it can also be used for a hash value. For a fair
comparison, we choose SIMD-oriented Fast Mersenne Twister
(SFMT) [30], a fast pseudo-random number algorithm, to
generate both random numbers and hash values. The consistent
hashing uses the binary tree search to map data on the
node. The simulation test was performed in a cluster with
three storage nodes with each having two 8-core E5-2650v2
processors, 128GB memory and one or more of the devices
as list in Table IV.

Figure 9 shows the algorithm performance by supposing that
the node number varies from 1 to 100,000 with a maximum
total of 100PB storage volume in which the data are divided
into numerous items (nearly 1.56 billion items) with 64MB
each. The vertical axis is scaled with logarithmic values.
Different IDs of data items are generated by random number
generator. For ASURA and SUORA algorithms, the nodes
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Fig. 9: Performance of different algorithms. The vertical axis
is logarithmic scale.

are assigned to segments in a number line sequentially in
which the latter uses two buckets with each having half nodes.
The range of random numbers is initially set to [0, 16)
and doubled to extend each time. The Consistent hashing-
v means each node has v virtual nodes. All the data are
placed with one replica. From Figure 9(a), it can be seen that
the calculation time of straw buckets increases linearly with
the addition of node numbers. This is because it recalculates
the hash value for each data item when adding a new node.
Compared with consistent hashing, there is a little performance
degradation in the ASURA and SUORA algorithms. Random
number regeneration for range extension spends more time on
the computation. The proposed SUORA algorithm spent less
time than ASURA as it places all data on half nodes (in the
first bucket) for the initial distribution. It reduces the random
number regeneration times and takes advantage of device
characteristics, such as half nodes having larger capacity. In
Figure 9(b), most algorithms require a low memory footprint
less than 100MB supposing both the node ID and hash number
have 4 bytes. For the SUORA algorithm, it needs additional
memory (<1GB) for hotness table to maintain read counter.
The cost is negligible in such a large-scale storage system.

C. Unified Distribution and Throughput

In this subsection, we evaluate data distribution uniformity
and throughput in a heterogeneous environment. As the calcu-
lation time of straw buckets grows linearly when a new node
is added, we mainly compare the other three algorithms which
are realistic choices for large-scale storage systems.

TABLE V: Data access pattern

FIO-randread2 percentage % 55.58 19.8 7.99 9.93 6.70
hotness 0 1-251 26-280 281-305 306-659

FIO-randwrite
percentage % 64.83 17.44 8.26 4.71 4.76

hotness 0 1-2 3-10 11-22 23-313

FIO-randrw
percentage % 65 17.73 8.28 4.76 4.23

hotness 0 1-18 19-280 281-300 301-792

IOZONE-read
percentage % 64.28 18.29 4.49 7.67 5.27

hotness 0 1-20 21-50 51-75 76-812

IOZONE-randrw
percentage % 60.81 15.42 7.59 8.46 7.72

hotness 0 1-15 16-90 91-115 116-784

IOR-read
percentage % 63.94 16.33 7.41 8.25 4.07

hotness 0 1-20 21-100 101-150 151-819
1 1-25 means there is 19.8% data with the read number between 1 and 25, which

is also used as setting for bucket threshold values in this pattern.
2 The bucket threshold values of {b0, b1, b2, b3, b4} can be set to
{0, 1, 26, 281, 306} for FIO-randread trace.

In the tests, we set the bucket threshold values according
to real data access pattern. To trace the data access pattern,
we deployed the Sheepdog [10], a distributed object storage
system, on the cluster and performed benchmarks on a QEMU
virtual machine running it. We modified the Sheepdog code
and traced I/O requests from the gateway component. Table
V shows the data access pattern under different benchmarks.
Each benchmark uses a 10GB file as input and sets 4KB for
block or record size. The hotness and percentage indicate read
times and the proportion of data with related hotness, respec-
tively. Supposing in SUORA, the nodes are divided into five
buckets from b0 to b4 with different bucket thresholds being
set according to different patterns and consists of one type of
device as shown in Table IV. For example, data will move
from b0 to b1 when its hotness exceeds 1 in FIO-randread
workload pattern. Other algorithms do not distinguish buckets
but use the same configuration.

To understand the statistics, we first formulate the equation
for data distribution. We assume that each type of bucket
has devices with the same average throughput, which is
t0, t1, ..., tm−1. The total data amount of devices in each type
of bucket can be represented as d0, d1, ..., dm−1. For the data
di in the bucket i, different hotness percentages and hotness
numbers are pi0, pi1, ..., pi(l−1) and hi0, hi1, ..., hi(l−1),
where l is the number of hotness threshold types. The SUORA
algorithm places data according to the hotness and bucket
threshold, in which the node or segment k in bucket bi has
data amount:

DSUORA = di ×
lik∑n−1
j=0 lij

(2)

Consider the various throughput of devices and read times
of data, the average read throughput of the storage is:

Taverage =

∑m−1
i=0

∑l−1
j=0 di × pij × hij∑m−1

i=0

∑l−1
j=0 di×pij×hij

ti

(3)

Figure 10 shows the data distribution and throughput under
different data access patterns as listed in Table V. Except
Figure 10(f), each bucket has the same node number. The
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 (a) Data distribution under different patterns
(10,000 nodes, 1PB, 3 replicas)

0

200

400

600

800

1000

1200

b0 b1 b2 b3 b4

1
0

-6
D

a
ta

 I
te

m
s 

o
n

 D
e
v

ic
e
s

Bucket Type

Consistent Hashing-b0-10

ASURA

SUORA

 

 

(b) Data distribution under different patterns
(100,000 nodes, 100PB, 1 replica)
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(d) Average data amount at each node with dif-
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Fig. 10: Data distribution and throughput

data are divided to data items with 64MB each. Supposing
consistent hashing and ASURA algorithms place multiple
replicas according to their original methods like mapping
one data copy. Figure 10(a)-(b) show data distribution in
each bucket. Consistent hashing-b0-10 means that consistent
hashing is configured with each node having 10 virtual nodes
in b0, in order to store the total data amount. It can be
seen that consistent hashing has a nearly fair distribution. It
achieves data balance but places excessive data on devices
with less capacity. Even using virtual nodes, consistent hashing
occupies too much capacity on b0 but omits other devices.
The ASURA algorithm distributes data among devices while
considering the capacity proportionally but does not consider
the device performance. For the SUORA algorithm, there is
few distribution variability when the data access pattern is
changed. Compared with consistent hashing and ASURA, the
SUORA algorithm not only places most data on buckets with
larger capacity but also maps the frequent read data on buckets
with higher throughput.

To further understand the algorithm uniformity, we count
average data amount on each node under FIO-randread pat-
tern, as shown in Figure 10(c)-(d). The data move according to
bucket thresholds from v0 = 0 to v4 = 306, e.g., SUORA-v0
means data placement with hotness value between v0 = 0 and
v1 = 1 in SUORA. It can be seen that the SUORA algorithm
achieves a more efficient adaptive distribution compared with
others. It distributes most frequent read data (hotness > v4)
in b4 bucket (node number is from 8, 000 to 10, 000 and
from 80, 000 to 100, 000, respectively) to improve the read
performance. In Figure 10(c), both b0, b1 and b2 have data

with different read frequency. It is because that the SUORA
algorithm places replicas on them and only migrates data from
b2 to b3 or b4 until the hotness exceeds v3. It significantly
reduces the data movement amount (less than 6%). In contrast,
consistent hashing evenly places the data among all devices
regardless of hotness. Although there is a little variability in
data placement for frequency, the ASURA algorithm lacks an
effective method to distinguish different devices.

Figure 10(e)-(f) show the average read throughput under
different patterns and configurations. Obviously, the average
performance is related with the throughput of each bucket.
In Figure 10(e), it can be seen that the SUORA algorithm
achieves the best performance. The average read throughput
of SUORA is nearly improved from 3.9 to 8.5 times compared
to consistent hashing and ASURA algorithms. Specially, the
average performance in FIO-randwrite pattern is reaching
more than half value of the performance of b4. This is because
that the SUORA algorithm uses the devices with the best
performance to store data that are read most. The throughput
of consistent hashing and ASURA algorithms is uncorrelated
with patterns. For them, the performance is mainly affected by
virtual node numbers and device capacity, respectively. Figure
10(f) shows the performance when using different configu-
rations under FIO-randwrite pattern. For example, SUORA-
6:6:9:9:4 means the ratio of node number in each bucket
is 6:6:9:9:4. Except the ASURA algorithm, the change of
node configuration does not affect the overall performance.
Evaluation results show that the SUORA algorithm signifi-
cantly improves the overall performance in different scenarios.
Though the percentage of hot data in a practical storage



system may be small, it can significantly improve the overall
performance with our SUORA algorithm.

V. CONCLUSION AND FUTURE WORK

In this research, we introduce the design of a new data dis-
tribution algorithm called SUORA for heterogeneous storage
systems. The SUORA algorithm addresses the challenges in
balanced performance, capacity, and cost for data placement
by taking advantages of heterogeneous device characteristics.
It divides heterogeneous devices into multiple buckets and
assigns them to different segments in each bucket. The bucket
can reflect the underlying distinct device characteristics and
benefit for data movement based on data hotness and bucket
threshold. The SUORA algorithm uses a pseudo-random num-
ber sequence to fairly and uniformly distribute the data among
devices in the bucket. By combining the performance with
the capacity and economic efficiency of different devices, the
SUORA algorithm constructs a unified and adaptive storage
solution for a heterogeneous environment. In the future, we
plan to further explore improvements in data placement. Our
further study also includes an effective data I/O pattern de-
tection and data caching strategy combined with the SUORA
algorithm in a heterogeneous storage system.
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