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Abstract—Solid State Drives (SSDs) using flash memory stor-
age technology present a promising storage solution for data-
intensive applications due to their low latency, high bandwidth,
and low power consumption compared to traditional hard disk
drives. SSDs achieve these desirable characteristics using internal
parallelism—parallel access to multiple internal flash memory
chips—and a Flash Translation Layer (FTL) that determines
where data is stored on those chips so that they do not wear out
prematurely. Unfortunately, current state-of-the-art cache-based
FTLs like the Demand-based Flash Translation Layer (DFTL)
do not allow IO schedulers to take full advantage of internal
parallelism because they impose a tight coupling between the
logical-to-physical address translation and the data access. In
this work, we propose an innovative 10 scheduling policy called
Parallel-DFTL that works with the DFTL to break the coupled
address translation operations from data accesses. Parallel-DFTL
schedules address translation and data access operations sepa-
rately, allowing the SSD to use its flash access channel resources
concurrently and fully for both types of operations. We present
a performance model of FTL schemes that predicts the benefit
of Parallel-DFTL against DFTL. We implemented our approach
in an SSD simulator using real SSD device parameters, and used
trace-driven simulation to evaluate its efficacy. Parallel-DFTL
improved overall performance by up to 32% for the real 10
workloads we tested, and up to two orders of magnitude for our
synthetic test workloads. It is also found that Parallel-DFTL is
able to achieve reasonable performance with a very small cache
size.

I. INTRODUCTION

In recent years, there has been a trend toward increasingly
data-intensive computing in a variety of fields, including
enterprise and scientific high performance computing (HPC).
Unfortunately, this trend has coincided with an ever-widening
gap between systems’ processing capabilities and their ability
to service IO demand. These lagging 1O capabilities threaten
to impose increasingly severe limits on the size of datasets
that applications can feasibly manipulate. There have been
numerous studies trying to improve applications’ perceived 10
performance through software approaches [1]-[4]. In contrast
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to the software approaches, the advances of storage technol-
ogy lead to direct improvement on the IO performance; for
example, over the past decade, Solid State Drives (SSDs) using
NAND flash memory technology have emerged as a promising
technology for lessening the performance gap between IO and
computation. SSDs are well suited for use in storage systems
designed for data-intensive applications due to their low la-
tency, high bandwidth, and low energy demand compared to
traditional hard disk drives. Due to the high cost, SSDs are
usually used as accelerators instead of replacing the hard disk
drives [5], [6], which means that the performance of SSDs
should be fully utilized. However, the internal design of SSDs
fail to achieve their full performance potential for two primary
reasons: data dependencies that limit achievable concurrency,
and storage management software that is not well tailored for
the unique characteristics of SSDs.

SSD hardware features a high degree of potential paral-
lelism. Despite the high degree of parallelism exposed by the
hardware, recent studies have shown that resource idleness
increases as the number of SSD resources (e.g., channels, dies,
and planes) is increased. For instance, recent work on Sprin-
kler [7] showed that internal resource utilization decreases
and flash memory-level idleness increases drastically as the
number of dies increases due to dependencies caused by some
10 access patterns and by flash-level transactional locality.

Another reason why SSDs fail to achieve their performance
potential is that the software used to manage them, including
the Flash Translation Layer (FTL), the cache management
algorithm, the block IO scheduling algorithm, and the file
system, are not well tailored to the actual characteristics of
SSDs. Recently, cache-based FTLs have risen in popular-
ity because they can outperform traditional log-block-based
FTLs. These cache-based FTLs maintain fine-grained logical-
to-physical address translation information in a large table in
flash memory, but to control the cost of accessing and updating
table entries, they use a portion of the SSD’s on-board RAM
as a cache. Nevertheless, cache-based FTLs still suffer from
Address Translation Overhead—the replacement overhead of
maintaining this mapping table cache. When the cache hit ratio
is low due to limited cache size or low temporal locality in the
workload (or both), there is a high address translation overhead
due to the large number of flash memory accesses required for
cache entry write back and replacement.

Ideally, the internal parallelism of SSD architectures such
as the one shown in Figure 1 could be used to alleviate address
translation overhead by allowing concurrent access to address
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Fig. 1: An example SSD organization.

translation table entries. Unfortunately, data dependencies in-
volved with the address translation and subsequent data access
make concurrent access challenging with cache-based SSD
management approaches. When a request arrives, the FTL
scheduler must query the mapping table to identify the physical
address of the data involved in the request. For traditional
FTLs that maintain coarse-grained mapping information that
can fit entirely in the device’s on-board RAM, the time required
for address translation is negligible compared to the time
required to access the request data itself in flash memory.
But for cache-based FTLs, it may take just as long to do the
address translation as the data access if handling the request
causes a cache replacement. Worse, with current SSDs the
data access can occur concurrently due to the SSD’s internal
parallelism but the prerequisite address translation operations
cannot, resulting in overall performance that fails to achieve
the potential of the SSD’s highly parallel architecture.

To address the problem of address translation overhead in
cache-based FTLs, we propose a technique that enables the
address translation operations in such FTLs to be handled con-
currently so that the address translation overhead can be largely
hidden. In our approach, the SSD queues address translation
requests separately from data access requests, allowing the
scheduler to sort or merge requests to better take advantage
of the SSD’s internal parallelism. As always, a particular data
access request must not start until its associated address trans-
lation request completes, but by separating address translation
requests from data access requests the scheduler has better
ability to schedule requests presented to flash memory so that
they can be serviced in parallel. Consequently, our technique
is a parallelism-aware improvement over existing cache-based
FTL approaches such as DFTL [8], and so we name our
approach Parallel-DFTL. The main contributions of this paper
are:

e An innovative IO request scheduling approach called
Parallel-DFTL that reduces FTL address translation over-
head by taking advantage of internal parallelism (Sec-
tion III);

e A performance model for Parallel-DFTL and discussion
of the implications of this model for SSD design (Sec-
tion III);

e A proof-of-concept implementation of Parallel-DFTL in
the FlashSim SSD simulator (Section V-A); and

e An evaluation of Parallel-DFTL using trace-driven sim-
ulation that compares its performance to the state-of-
the-art DFTL approach and a page-mapping approach
(Section V).

II. MOTIVATION AND BACKGROUND
A. SSD Architecture

Most of the SSDs are comprised of several NAND flash
memory chips to not only make larger capacity but also achieve
higher bandwidth. A NAND flash memory chip contains
multiple blocks, each consisting of multiple pages. Read and
write takes place in unit of pages, while a block-level erasure
is required for overwriting existing data. A page is typically
2KB to 16KB and 64 to 256 pages makes a block. For
example, a 120Gigabyte Samsung 840 EVO SSD is comprised
of eight 128Gigabit 19nm triple-level-cell (TLC) chips with
each containing 8192 blocks, and each block is consisted of
256 8KB pages [9].

In order to achieve better bandwidth, most SSDs use
multiple flash memory chips, several 10 channels, internal
caches, and processing cores to improve performance [10]—
[15]. The IO bus channels connect packages to the SSD
controller, and each channel may connect multiple packages to
the controller. The bus channels are relatively simple, and have
a 100us latency for combined bus transfer and flash access,
thus limiting their individual bandwidth to 40MB/s. To achieve
higher bandwidth, the multiple flash memory chips (dies) are
organized to have multiple channels, packages, dies and planes.
As seen in Figure 1, there are 8 channels, 2 flash packages
per channel, 4 dies per package, and 4 planes per die (planes
not shown in the Figure). Vendors like Micron and Samsung
have proposed flash devices that further expose parallelism
at several levels [16], including channel-level striping, die-
leveling interleaving and plane-level sharing. To capitalize on
this internal parallelism, most SSDs use “write-order-based
mapping” so that the data written is stored in locations based
on the order it is written, regardless of the host’s logical
address for the data. For example, if the host writes four
pages with logical addresses 10, 25, 41 and 92, the SSD
will attempt to write them to four consecutive physical pages
in flash memory, even though their logical addresses are not
contiguous. SSDs often number physical flash pages so that
they are stripped over packages, dies or planes to facilitate
concurrent access [15].

B. Flash Translation Layer

SSDs use a flash translation layer to manage their flash
storage for good performance and long device lifetime. Be-
cause of the disparity between a NAND flash chip’s page-sized
read/write granularity and its block-sized erase granularity, and
because of its limited number of erase and write cycles, most
FTLs use an out-of-place approach similar to that of a log-
based file system [17]. When the FTL receives a page write
request, it must identify a free page in which to store the data
(i.e., a page that has been erased since it was written last).
If no suitable free pages are available, the FTL must initiate
garbage collection[18] to consolidate live pages and produce



free pages. The overhead of garbage collection is high: in
addition to the cost of copying live pages from a victim block
and erasing it, the garbage collector may be very sophisticated
in how it selects victim blocks and how it groups live pages
for performance and wear-leveling reasons. The net effect is
that SSD write operations can be very expensive compared to
read operations.

With the out-of-order write approach, the data at a given
logical page address may have different physical addresses
over time so the FTL must translate logical addresses to
physical addresses. Ideally, the SSD would store its address
translation information in on-board DRAM to control the cost
of address translation. However, it is not cost-effective to keep
all the information at page-level (page is the smallest unit that
data are accessed in flash memory), for example, a 128GB SSD
with 2KB pages and 4B per translation table entry requires
256MB for the translation table.

To control translation table size so that it fits in on-board
DRAM, a block-mapping approach keeps address translation
information a much coarser granularity than a page-mapping
approach, but fails to deliver good performance, especially
for random access. To address the limitations of maintaining
mapping information, several log-block based approaches in-
cluding BAST [19] and FAST [20] have been proposed to use
part of the flash memory blocks as log blocks that are managed
with page-sized mapping, while the rest of the flash memory
blocks are managed with block-sized mapping. Even though
they outperform the block-mapping, they still suffer from the
merge operations, which occur when the data in log blocks
need to be migrated into data blocks.

The Demand-based Selective Caching Flash Translation
Layer [8] (DFTL) retains the performance and flexibility of a
pure page-mapping approach but requires much less DRAM.
DFTL keeps its full page mapping table in Translation Blocks
in flash memory, and uses DRAM for its Cached Mapping
Table, a cache of mapping table entries. This approach provides
better read and write performance than the hybrid mapping
approaches for many workloads, because workloads commonly
exhibit access locality that results in a high Cached Mapping
Table hit rate. However, if a workload has low access locality
or the cache is too small, there is a large overhead for
transferring cached mapping data between DRAM and flash
memory. This overhead can degrade overall performance by
up to 57% compared to workloads that exhibit no cache
misses [21].

C. DFTL Address Translation

Our work focuses on reducing DFTL’s address translation
overhead by exploiting an SSD’s internal parallelism. Figure 2
(adapted from [8] and also used in our previous work [22])
illustrates how DFTL handles read and write requests using
four steps.

1) A request arrives and the FTL extracts its logical page
number (LPN);

2) If the Cached Mapping Table is full, a victim entry
is selected and written back to the Translation Pages
in flash memory. The updated mapping is written to a
new Translation Page, and the old Translation Page is
invalidated;
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Fig. 2: The handling read/write requests in DFTL.

3) The page-mapping entry of the requested page is loaded
into the Cached Mapping Table; and

4) The requests data is written to, or read from, the physical
data block indicated by the newly-loaded page-mapping
entry.

Step 2 is known as a write-back operation, and step 3 is the
map-loading operation. The write-back operation only appears
when the cache is full and the victim entry is dirty (i.e., its
cached mapping is different from the mapping stored in flash).
This situation is rare when the workload is dominated by
reads, but can’t be ignored when the write frequency is high
because the FTL’s out-of-place write approach nearly always
maps the logical address to a new physical address. The write-
back operation is expensive as it introduces a write operation
on the flash memory which has significantly larger latency
comparing to a RAM access. Worse, flash write may also incur
the garbage collection process if there is no free block to write,
and it would be even more expensive. Considering the cost
of garbage collection and block writing of address translation
data, DFTL write-back operations are a substantial contributor
to its address translation overhead. The map-loading operation
is necessary whenever a cache miss occurs, regardless of
whether it is a read or write operation. Thus, there can
be approximately twice as many read and write operations
to flash memory for workloads with poor temporal locality,
as compared to workloads with good temporal locality. (see
Figure 2).

Figure 3 (top and middle) compares the cost of DFTL
address translation and data access with that of an ideal page-
mapping approach where the entire page-mapping table is kept
in on-board DRAM. The figure illustrates the timeline as an
SSD handles three incoming IO requests. In both cases, address
translation must occur before data access, and we assume that
internal parallelism allows the data pages to be accessed in
parallel. With page-mapping, the time required for address
translation is very small compared to the time required to
access the data, because the address translation information is
held in on-device DRAM. In contrast, for DFTL the address
translation involves long-latency flash memory accesses whose
duration can rival that of the data accesses themselves. The
address translation operations cannot be done concurrently
because the IO scheduler that schedules the IO requests is
only aware of the logical address of the requested data but not
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of IO requests and the parallelism-aware scheduling. It shows
that the write-back and map-loading of the four requests are
completed and the data access is being issued. It is assumed
that the write-back, map-loading and data access of the four
requests all take only one concurrent flash memory access.

the address of the Translation Pages that contain the address
mapping information it needs. Thus the address translation
operations must occur sequentially in an unmodified DFTL
approach, and it is this sequential processing that we eliminate
with Parallel-DFTL.

III. DESIGN OF THE PARALLEL-DFTL

Our goal with Parallel-DFTL is to allow the IO scheduler
to issue requests so that address translation can occur concur-
rently, reducing the overall time required to service requests by
taking advantage of the SSD architecture’s internal parallelism.

A. Separating Address Translation from Data Access

One way that SSDs expose their architecture’s internal
parallelism is by having multiple channels for accessing their

flash memory chips. Most SSDs use a write-order-based load
balancing so that the iy, block written is assigned to channel
number ¢ mod D, where D is the total number of chan-
nels [14]-[16]. This gives good write performance regardless
of the workload (sequential or random) because write requests
are distributed evenly across the available channels and be-
cause requests issued on distinct channels may be serviced
concurrently (including read requests). However, with cached-
based FTLs like DFTL, there are flash memory accesses for
the map-loading and write-back cache management operations
in addition to the accesses required to access the requested
data. Because these cache management operations are tightly
coupled with their associated data access requests, and because
they must be handled sequentially and complete before their
associated data access can start, servicing them can severely
degrade the performance benefit of being able to address the
request data concurrently (see Figure 3, middle). If the address
translation operations could be decoupled from their associated
data access operations and expressed as distinct IO operations,
the IO scheduler can schedule them so that they may occur
concurrently thus reducing the overall time required to service
requests (see Figure 3, bottom).

Parallel-DFTL achieves this decoupling by adding caching
operations (loading and write-back) associated with address
translation to distinct queues so they can be scheduled inde-
pendently. Because the target physical address of the cache
entry being written back is determined dynamically (just like
any other data written to flash memory), and is unrelated to the
address of the entry being loaded, we further decouple the two
operations so they can be serviced concurrently. For example,
when translating four page addresses whose translation entries
are not in the cache, we can generate a combined cache
operation writing back four victim cache entries together and
then load the requested four replacement entries’ addresses,
and thus may be able to combine write-backs into a concurrent
flash write and the map-loadings into a single flash read.

To simplify our initial Paralle]l-DFTL design, we assume
that the 1O scheduler preserves the order of IO requests. This
design decision reduces the amount of performance benefit
possible from making use of internal parallelism due to the
coupling of address translation and data access operations.
Our Parallel-DFTL, however, decouples the address transla-
tion operations (and also the two component of the address
translation operation) so that the internal parallelism could
be utilized to speed up both the data access and the address
translation. Reordering 10 requests generated from data access
and address translation may produce a similar result, but we
leave the exploration of challenges and benefits of out-of-order
scheduling for future work.

B. Parallel-DFTL Algorithm

Parallel-DFTL breaks each IO request to the SSD into two
parts: an address translation request and a data access request.
As shown in Figure 4, the SSD controller queues each part onto
the pending write-back queue, pending map-loading queue
and pending data access queue, respectively. Each address
translation request contains a written-back operation if needed
(a flash memory write) and a map-loading operation (a flash
memory read). The use of the separate queues is to enable
simpler pipelining and synchronizing the map-loading and



Algorithm 1 Scheduling of Address Translation Requests

INPUT: Pending write-back queue (Pend_Write_Q), completed write-back
queue (Comp_Write_Q), pending map-loading queue (Pend_Load_Q),
completed map-loading queue (Comp_Load_Q), ;

1: while SSD is running do

2: if there exist requests in Pend_Write_Q then

3: schedule 10s in Pend_Write_Q to flash memory

4: move completed requests from Pend_Write_Q to Comp_Write_Q
5: else

6: if new address translation requests R arrives then

7: add R to Pend_Write_Q and Pend_Load_Q

8: end if

9: if there exist requests in Comp_Write_Q and Pend_Load_Q then
10: schedule 10s in Pend_Load_Q
11: remove map-loading-completed requests from Comp_Write_Q
12: move completed requests from  Pend_Write_Q to

Comp_Write_Q

13: else
14: continue
15: end if
16: end if
17: end while

data access of the same requested data so that the maximum
parallelism can be utilized.

When the Parallel-DFTL scheduler receives a request, it
adds an entry to each of the three pending queues. The
generation of the write-back and map-loading operations is
illustrated in Figure 4. When each write-back and map-loading
operation is generated, it is added to the corresponding pending
queue.

The requests in the pending write-back queue are first han-
dled, concurrently if possible. The write-back operations clean
up the cache space so that the requested mapping entries could
be loaded into cache. It depends on the locations of these write-
back mapping entries that if they can be done concurrently.
If these write-back requests are located on Translation Pages
at separate packages, dies or planes that can be accessed in
concurrent or interleaved fashion, they can take advantage the
parallelism. In addition, it is also possible that multiple write-
backs request the same Translation Page so that they can be
combined with a single flash page write. After the write-
back is complete, the map-loading requests in the pending
queue can proceed. Like the write-back operation, the degree
that the map-loading requests can be parallelized depends on
the location of the requested data. But a series of sequential
requests would be likely to fit into a single Translation Page,
which would require reading only one flash page. For example,
there are four requests with logical address 1, 2, 3 and 4
in Figure 4. We assume that each of the four page requests
requires a write-back and a map-loading operation and the
corresponding write-backs of the four requests write to the four
different Translation Pages which can be accessed at the same
time (see Figure 4, top-right corner). After the four write-backs
are complete, the mapping entries for request 1, 2, 3 and 4 are
loaded into cache. Because the mapping entries of page 1, 2,
3 and 4 are located at the same Translation Page (assuming
each Translation Page contains 4 entries), it only requires one
flash read to load these four mapping entries.

When Parallel-DFTL adds a address translation request to
the pending queue, it also adds the corresponding data access

request to the pending data access request queue to wait for
the completion of the address translations (synchronization
needed). When the address translation operations (including
write-backs and map-loadings) are completed, the correspond-
ing data access request are moved from the pending data
access queue to a ready data access request queue that they
can be issued to the flash memory. For example, in Figure 4
the data for requests 1, 2, 3, and 4 are moved from the pending
data access queue to the ready data access queue when their
corresponding write-back and map-loading requests are in the
completed queue, and are then accessed via channel Cl1, C2,
C3 and C4 independently because their physical addresses
locate on the four different channels.

It is noticed that the address translation and the data
access operations are not always possible to be handled in
a concurrent way. For example, small random IOs are usually
hard to be parallelized because the target address of the address
translation and the data access requests can be neither contigu-
ous or locating on independent channels. Our Parallel-DFTL
is not able to improve the performance of those scenarios, but
is designed to optimize the utilization of the parallelism on the
address translation operations on top of the existing methods
that parallelize the data access.

Algorithm 1 details how Paralle]l-DFTL schedules address
translation requests (the scheduling of data access requests is
not shown to save space but it is similar). It is noticed that
we do not describe the underlying IO scheduling algorithm.
This is because our technique separates the two kinds of
address translation operations from data access operations and
send them into different requests queues so that they can
all benefit from concurrent data access. We want it to be a
generic solution but not to depend on a specific IO scheduling
algorithm. It is up to the underlying IO scheduler to sort and
merge 1O requests to better take advantage the data parallelism
and sequentiality.

IV. MODELING AND ANALYSIS OF PARALLEL-DFTL
A. Cache-Based FTL Model

For our proof-of-concept Parallel-DFTL implementation,
we modeled the SSD with two major components: RAM and
flash memory. The RAM is used for caching the mapping
table to support fast address translation. If a needed address
translation is not found in this cache, the simulator models
the overhead of accessing flash memory to obtain the address
translation including write-back. Table I summarizes the model
parameters we used. These parameters are representative of
current SSD devices. We make the assumption that the write
ratio is the same for the requests that are cache-hit or cache-
miss, so that the ratio of dirty entries in the Cached Mapping
Table is equal to the total write ratio of the IO requests
(Ruwrite). We also assume that the parallelism can be fully
utilized for maximum bandwidth, regardless if it is channel-
level, die-level or plane-level parallelism.

First, we derive the total bandwidth for the ideal page-
mapping FTL. The total bandwidth is equal to the bandwidth
of read and write, ignoring the translation time due to very



TABLE I: Parameters used in the model

Tread | Flash read | 25us Twrite] Flash write | 200us
latency latency

Tvus | Bus transfer | 100us Spage | Flash page | 4KB
latency size

Rpit | Cache hit | 0-1 Rurita Write ratio 0-1
ratio

Npara| Parallelism 1-32
level

short RAM access latency, as shown in Equation 1.
+ Spuge X (1 - Rwrite))

Spuge X me’te
Twrite + Tbus

BW. age — N, ara
peg P * ( Tread + Tbus

To calculate the bandwidth of DFTL and Parallel-DFTL,
we need to estimate the time spent on address translation. This
time has two components: time for write-back and for map-
loading. The write-back operation occurs when the Cached
Mapping Table is full and selected victim map entry is dirty.
We assume steady state behavior: the Cached Mapping Table
is full, and each address translation would incur cache replace-
ment. We estimate the possibility that a replaced map entry is
dirty as equal to the write ratio (R,,,it), because higher write
ratio dirties more cached map entries. Both the write-back and
map-loading operations occur when cache miss occurs and
they introduce a flash write and read operation, respectively.
Equation 2 defines our model’s address translation time.

ﬂr(znslation :ﬂuriteback + Tm,a,p—loa,ding
=Lwrite X (1 - Rhit) X Ryrite 2
+ T'r'ead X (1 - Rhit)

Given the estimation of the translation overhead, we then
derive the maximum bandwidth of DFTL. In the real DFTL
design the address translation and data access are tightly
coupled so it might not be possible to parallelize the data
accesses, and address translation requires sequential process-
ing. For our model, however, we assume that data accesses
can be parallelized so that we can focus on Parallel-DFTL’s
ability to hide address translation overhead compared to DFTL.
With DFTL, the read and write bandwidth benefits from the
parallelism by N, times, but incurs N4, times address
translation latency since each of the concurrently accessed
pages need to be translated one by one. Equation 3 models
the maximum bandwidth of DFTL in terms of the write ratio,
cache hit ratio and parallelism level. In contrast, the Parallel-
DFTL’s maximum bandwidth can be derived by removing the
Nparax before each Ty,qpnsiation, reflecting Parallel-DFTL’s
ability to take full advantage of parallelism for address trans-
lation. (equation is not shown)

Spage X Rwrite
Twrite + Tbus + Npara X Ttranslation
Spage X (1 - Rwrite)

Tread + Tbus + Npara X Ttranslation
(3)

BWdftl :Npara X

+ Npara X

B. The Effect of Cache Hit Ratio

Using our maximum bandwidth equations for the three FTL
approaches, we next analyze the effect of cache hit ratio and

write ratio on overall bandwidth. Cache hit ratio is a significant
determining factor for the performance of DFTL, because
cache misses cause substantial address translation overhead.
Using our equations and the parameters from Table I, Figure 5a
shows the maximum bandwidth versus the cache hit ratio when
varying that ratio from O to 1, with write ratio fixed at 0.2.
We use page-mapping FTL as the baseline. The curves have
similar relationships if we use write ratios between 0.2 and
0.8 (not shown due to space limitations), except higher write
ratios result in lower bandwidth because they cause a larger
number of flash write-back operations. As shown in Figure 5Sa,
the DFTL’s bandwidth degrades by about 5 times when the
cache hit ratio decreases from 1 to 0. The biggest bandwidth
drop occurs between 1 and 0.7, where DFTL provides only
47.7% of the baseline approach’s bandwidth. The performance
degradation is 30% even for cache hit ratios as high as 0.9.

In contrast, Parallel-DFTL provides less than half the
bandwidth degradation of DFTL across almost the full range
of cache hit ratio compared to DFTL. For example, when the
cache hit ratio is 0.9, Parallel-DFTL achieves 95.3% of the
baseline’s maximum bandwidth, while DFTL achieves only
71.7%. With a cache hit ratio of 0.8, Parallel-DFTL still
maintains 90.4%, while DFTL plummets to 55.5%. From these
results, we conclude two things:

e Parallel-DFTL hides a large part of the address translation
overhead;

e Parallel-DFTL tolerates lower cache hit ratios with rea-
sonable performance compared to DFTL.

C. The Effect of Write Ratio

Next, we study the relationship between the maximum
bandwidth and the write ratio. A higher write ratio not only
introduces more high-latency flash writes, but also generates
more write-back operations as dirty cache data are produced
by cache-hit writes. We first consider a high locality workload
scenario where most address translations are serviced using
cached entries. Using a cache hit ratio of 0.95, Figure 5b shows
that DFTL still provides much less than the baseline approach’s
ideal performance, with the largest deviation at around a
50% write ratio. In contrast, Paralle]l-DFTL gives performance
within 5% of the baseline. With a cache hit ratio of 0.5%
(not shown in figure), DFTL exhibits even worse performance
but Parallel-DFTL’s performance remains reasonably close to
the baseline. It confirms that Parallel-DFTL is able to provide
better overall bandwidth and to better tolerate low cache hit
ratios than DFTL when cache size is small or workload locality
is low.

D. FTL Scalability

We next consider the scalability of Parallel-DFTL with
the amount of SSD internal parallelism. SSD capacities can
be increased in two ways: by building SSDs with higher
capacity flash memory chips, and by increasing the number
of chips used per device. Both approaches can result in an
increase in the amount of internal parallelism. Previous work
showed that as one increases the internal parallelism in an SSD
design, the utilization tends to decrease with existing FTLs [7].
As parallelism increases, data access time decreases due to
increased concurrency and the address translation overhead
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constitutes a larger percentage of the overall response time. To
evaluate the effect of scaling the internal parallelism level of
SSDs, we vary the parallel level from 1 up to 32, while fixing
the cache hit ratio and write ratio to 0.7 and 0.5, respectively.
Figure 5c illustrates the impact of increases in parallelism
on the maximum bandwidth achievable by our three FTLs.
As shown in the figure, DFTL does not scale well beyond a
parallelism level of 8, and its bandwidth saturates at about 80
MB/s. In contrast, the Parallel-DFTL exhibits almost linear
scalability and achieves approximately 540MB/s bandwidth
when the parallelism level scales to 32, which is 6.5 times
higher than the DFTL. Our model shows that as parallelism
is increased, the performance degradation caused by address
translation overhead becomes more severe for DFTL, and
Parallel-DFTL’s ability to hide that overhead shows more
and more performance benefit. As users demand SSDs with
ever higher capacities, increases in internal parallelism are
inevitable and Parallel-DFTL’s overhead-hiding advantage over
the traditional DFTL becomes increasingly important.

V. EVALUATION

In this section, we describe our proof-of-concept Parallel-
DFTL simulator implementation and detail its evaluation using
several micro- and macro-benchmarks.

A. SSD Simulator Implementation

We implemented the proposed Parallel-DFTL FTL scheme
in one of the most popular and well-verified SSD simulators,
FlashSim [23]. FlashSim is based on the widely-used DiskSim,
an accurate and highly-configurable disk system simulator.
FlashSim inherits DiskSim modules for most parts of the
storage system, including device drivers, buses, controllers,
adapters, and disk drives. However, FlashSim implements
an SSD model instead of DiskSim’s hard disk model. The
FlashSim SSD model incorporates SSD-specific characteristics
like FTL, garbage collection, and wear leveling. The stock
FlashSim distribution includes implementations of several FTL
schemes, including page-mapping, FAST [20], and DFTL [8],

which makes it the ideal choice for validating and comparing
FTL schemes. However, the stock FlashSim distribution does
not take into account an SSD’s internal parallelism, which
we require to evaluate concurrent flash access with our tested
FTLs. To address this limitation, we integrated a FlashSim
patch from Microsoft [15] that implements channel, die, and
plane level parallelism and maximizes concurrent access to
these levels. We used 2GB die size, 1 die per package, 4
planes per die and 2 packages per channel for the simulations.
Whenever we simulated a parallelism level higher than 8§,
we added more channels. For example, when simulating 16
parallelism level, we used 4 packages, each containing 4 dies.

We added two address translation queues, one for write-
back operations and the other for map-loading. The data
access requests wait for the completion of both the write-
back and map-loading before being issued. The write-back
and map-loading requests are treated as normal flash IO
requests, except they access a reserved region of the flash
memory which contains mapping information. Using our
proof-of-concept Parallel-DFTL implementation, we evaluated
its effectiveness at servicing requests from real and synthetic
workload traces. We compared its performance against the
state-of-the-art DFTL scheme and the ideal page-mapping FTL
schemes. Same as with our handling of the DFTL model (see
Section IV), we allowed the DFTL implementation to use
concurrent data access but required the address translation
operations to occur sequentially. This may not be true for
DFTL since IO scheduling may not even be able to parallelize
the data access operations because they are mixed with address
translation operations, but we still make this assumption so
that we can focus on how the Parallel-DFTL could reduce the
address translation overhead. We do not change the way that
how I/O operations are concurrently handled in the simulator,
but just adding separate 10 request queues for each type of
operations. Even though it is not clear that if the I/O scheduler
in the simulator represents the real situations of how the I/O
operations are handled inside SSDs to utilize the internal
parallelism, we argue that it is enough to evaluate the effect
of parallelized address translation operations.



TABLE II: The parameters of macro-benchmark traces. Finan-
ciall and Websearchl are also used in the original DFTL paper
while the Exchangel is similar to the TPC-H trace used in the
DFTL paper.

Workload Average Write | Cache hit ratio
trace request size ratio with 512KB cache
Financiall | 4.5KB 91 % | 78.1 %
Websearchl| 15.14KB 1% 64.6%
Exchangel | 14.7KB 69.2% | 89.3%

For our evaluation, we fed block IO traces for each of
our test workloads to our modified FlashSim simulator and
observed the reported performance including average response
time, cache hit ratio, and bandwidth. We used real and
synthetic workload traces as macro- and micro-benchmarks,
respectively.

B. Macro-benchmark Evaluation and Analysis

Table II shows the characteristics of the real workloads
we used as macro-benchmarks. Financiall [24] reflects the
accesses of Online Transaction Processing (OLTP) applications
from a large financial institution. It is write-dominant, has
small request sizes, and moderate temporal locality, which
makes it a moderately heavy workload for a storage system.
The Websearchl [24] trace contains accesses from a popular
search engine. In contrast to Financiall, it is read-dominant,
with large request sizes and relatively low temporal locality.
The Exchangel [25] trace was collected by Microsoft from
15 minutes’ accesses to one of their Exchange Servers. This
workload features a relatively high write-ratio, large request
sizes, and high temporal locality.

Even though traces chosen are considered rather old nowa-
days given the rapid growth of data demand and many new
traces becoming available, we chose them purposely because
they were used (or similar traces were used) in the original
DFTL paper. This choice was an attempt to better represent
the DFTL and for some evaluations to have a direct comparison
with the results reported in the original DFTL paper. The
original DFTL paper reported the performance results with
the Financiall, Websearchl and TPC-H (similar to Exchangel)
traces running on the FlashSim simulator. In this study, we also
conduct evaluations using similar experiment setups (SRAM
size range and SSD capacity) and the same metric (average
response time) on these traces. We believe this choice of the
traces and the evaluation methodology promote a better and
fair comparison against the DFTL.

These traces are chosen to evaluate the Parallel-DFTL
comparing to the original DFTL, in which the same or similar
traces are used. These traces are representative of enterprise
IO scenarios, an environment that traditionally suffers from
poor 10 performance. When servicing these macro-benchmark
traces, we varied the size of the Cached Mapping Table from
32KB to 2MB.

Figures 6a, 6b and 6¢c present the average response time
and cache hit ratio of the simulations for our tested FTL
schemes. In general, Parallel-DFTL substantially outperforms
DFTL in all the three cases for all tested cache sizes. Similar
to our findings from Section IV, the smaller RAM cache size,

which results in lower cache hit ratio, allows Paralle]l-DFTL
to gain more performance speed-up compared to DFTL. With
bigger cache sizes, the response time for DFTL approaches
the baseline and the benefit of Parallel-DFTL becomes less
significant. This confirms the finding in Section IV-B that
Parallel-DFTL is able to sustain much better performance than
DFTL when the cache hit ratio is low and is still effective when
the cache hit ratio is high.

We further looked into the time spent on the address trans-
lation operations in the three tests. We compare the address
translation time in Parallel-DFTL against DFTL, and plot the
normalized time for write-back and map-loading operations,
respectively (see Figure 6d). We find that Parallel-DFTL bears
least improvement in Financiall trace. We explain that the
Financiall trace has a small average request size and a high
cache hit ratio with 512KB cache size. The average request
size of Financiall (4.5KB) is just a little larger than the page
size of the simulated SSD (4KB); and we also find that 90%
of its requests are 4KB or smaller. So, most requests only
access a single flash page, which limits the possibility to use
concurrent accesses to take advantage of internal parallelism.
In contrast, with the Websearchl and Exchangel workloads,
the map-loading in Paralle]-DFTL is much reduced compared
to DFTL. This is because the larger request size makes
it possible to merge multiple map-loading requests into a
single one. However, because the addresses that write-back
operations request are mostly random, the level of parallelism
can be utilized is relatively low. This behavior suggests that
the Parallel-DFTL’s performance is strongly sensitive to the
request size, which is further evaluated in Section V-C1 with
synthetic benchmark.

C. Micro-benchmark Evaluation and Analysis

To focus on the sensitivity of Parallel-DFTL to IO request
size, we synthesized a micro-benchmark trace. We also adapted
this micro-benchmark to evaluate the effect of a poorly-
mapped SSD, a scenario observed in practice [15].

1) The Effect of Request Size: Our synthetic benchmark
first writes a 1GB region sequentially. It then reads this 1GB
region using different request sizes ranging from 4KB to
64KB. We measured the total time taken to read the 1GB
region to calculate the overall bandwidth for the various read
request sizes. We only considered read requests for this test
because write requests produce a similar result.

In Figure 7a, we find that the bandwidth of all three FTLs
scales with the request size until reaching 32KB, which is the
size of 8 flash pages and the parallelism level in the simulation.
The FTLs benefit from the larger request size because internal
parallelism allows the simulated SSD to issue multiple page
requests at the same time. Parallel-FTL had much higher
bandwidth as the request sizes were increased, for reasons
similar to those described in Section IV-D.

2) The Effect of Ill-mapped SSD: Because of the “write-
order-based mapping,” the physical organization of data is
determined by the pattern that data are written. If data are
written sequentially, they can be read in a sequential fashion
with very good performance. However, if data are written
randomly, contiguous logical data will not be mapped to
consecutive physical pages. In the worse case, lots of data
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might be mapped to the same plane of a die on a flash package
so that a sequential read request on the data will not be able to
take advantage of any internal parallelism. This is the so-called
ill-mapped SSD problem [15].

To evaluate the effect of an ill-mapped SSD, we slightly
modified our synthetic benchmark from Section V-CI so that
it first writes the 1GB data sequentially and then reads this
region in various request sizes. Because the data are written
in sequential fashion, they are placed in a continuous way to
take full advantage of the parallelism and the subsequent read
could also be parallelized if the request size spans multiple
concurrent flash memory units. For example a 32KB read
request can be handled by issuing a read to 8 flash pages
at the same time if the parallelism level is 8. Next, we
wrote the 1GB data randomly and read this region so that
even a large read request that spans multiple pages were not
accessing contiguous physical flash pages. We expect that
random-written data will reduce Parallel-DFTL’s ability to
leverage internal parallelism.

In Figures 7a and 7b, we report the bandwidth of the
Parallel-DFTL, DFTL and page-mapping FTLs with request
sizes 4KB, 8KB, 16KB, 32KB and 64KB, which represent 1,

2, 4, 8 and 16 flash pages’ size, respectively. As shown by
Fig. 7a, Parallel-FTL achieves performance that is very close
to the baseline when the request size increases. This is because
the continuously allocated data allows address translation to
benefit from the available internal parallelism. In contrast,
Fig. 7b shows that Parallel-DFTL does not give much improve-
ment over DFTL, as the poor data mapping greatly limits the
ability to use concurrent data access. We note, however, that
the baseline also suffers a 2 to 4 times performance degradation
compared to the read-after-sequential-write case.

VI. RELATED WORK

A. Understanding and Improving FTL Performance

DFTL [8] is a well-known, high performance, and practical
FTL that serves as a gold standard for several subsequent
research efforts such as ours. Hu et al. [21] sought to quantify
and overcome the performance limitations of DFTL. They
found that address translation overhead caused by interactions
with flash memory for cache write-back and mapping-loading
operations could degrade DFTL’s performance significantly.
To address this limitation, they proposed the Hiding Address
Translation (HAT) FTL that stores the entire page mapping ta-
ble in phase change memory (PCM), an emerging non-volatile
storage technology with better performance than flash memory.
It requires the addition of an emerging (and hence expensive)
PCM memory device to the SSD architecture. In contrast, our
software-only Parallel-DFTL approach is usable on currently
available SSD architectures. Several recent studies involved
understanding and optimizing the utilization of SSD internal
parallelism [7], [11], [26]. These studies helped motivate our
work to make better use of under-utilized internal parallelism,
and to improve the request scheduling to maximize utilization.

Reducing address translation overhead is one way to im-
prove the cache-based FTLs’ performance; another fruitful
direction involves separating hot/cold data to be written in
flash memories to improve the efficiency and performance
of garbage collection. In a previous work [22] we proposed
the ASA-FTL method that used lightweight data clustering to
distinguish hot and cold data, so that data with similar expected
access patterns and lifetimes could be placed together within

The time spent on address translation operations



flash storage blocks, thus increasing the likelihood that the
garbage collector would find victim blocks with few (or no)
valid pages that it would have to migrate before block erasure.
Our Paralle]l-DFTL work complements these efforts and can
be implemented alongside them in a high performance FTL.

B. SSD Performance Modeling

Desnoyers et al. [27] developed and validated SSD perfor-
mance models for several types of FTLs. They also developed
a comprehensive performance model for an SSD garbage col-
lector, and found that hot/cold data separation has a substantial
positive impact on garbage collection efficiency under work-
loads with non-uniform access patterns. Others have modeled
various garbage collection schemes, including the impact of
the associated write amplification effect, to improve garbage
collection efficiency [18], [28]. In this work, we developed a
performance model for predicting the impact of Parallel-DFTL
on address translation overhead. Just as our Parallel-DFTL
complements approaches that focus on improving garbage
collection performance, our performance models could be
composed with garbage collection performance models from
the existing work to achieve a more holistic model for SSD
performance.

VII. SUMMARY AND FUTURE WORK

Data-intensive applications demand high performance stor-
age systems, and the recently emerged flash-memory-based
solid state drives present a promising solution. In this paper,
we proposed an enhancement to the state-of-the-art DFTL
approach that reduces its address translation overhead. Our
Parallel-DFTL decouples address translation from data access
so as to increase the likelihood of concurrent access to the
various parallelism levels of flash memory storage. We devel-
oped a performance model for our Parallel-DFTL approach,
the standard DFTL approach on which it is based, and an
ideal page-mapping approach as a baseline. Our model predicts
that Parallel-DFTL sustains very good performance even if the
page-mapping cache hit rate is low, whereas the performance
degradation of DFTL is up to five times larger than Parallel-
DFTL. Our model also predicts that Parallel-DFTL will scale
much better than DFTL with increases in the amount of inter-
nal parallelism in the SSD architecture. We also implemented
our approach in the well-verified and widely-used FlashSim
SSD simulator, and evaluated the performance of Parallel-
DFTL against that of DFTL and idealized page-mapping using
trace-driven simulation with both real and synthetic workload
traces. We found that Parallel-DFTL exhibited significantly
lower address translation overhead than DFTL and reduced
the average response time by 35% for the real workloads and
several orders of magnitude for the synthetic workload.

One of the biggest limitation of this work is the lack of
evaluation in real SSD devices. We are studying the possibility
of implementing it in a prototype SSD device. It is also our
plan to adapt the idea to other FTL algorithms to better take
advantage of the parallelism in the FTL level.
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