DVS: Dynamic Variable-width Striping RAID for
Shingled Write Disks

Dan Luo, Ting Yao, Xiaoyang Qu, Jiguang Wan*, and Changsheng Xie
Wuhan National Laboratory for Optoelectronics, Department of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan City, 430074 China
{jgwan,cs_xie} @mail.hust.edu.cn, luodan860514 @ gmail.com

Abstract—Disk data density improvement will eventually be
limited by the super-paramagnetic effect for perpendicular mag-
netic recording. Of the various new technologies being explored,
Shingled Magnetic Recording (SMR) exposes as the most promis-
ing one to achieve high areal density increase and little changes
to the manufacturing process. At present, high-capacity Shingled
Write Disks (SWDs) are available from Seagate and HGST. Since
SMR is leading next generation disk technology and more and
more SWDs will be used in storage systems, there is a great
need to look over the current RAID storage techniques based on
HDDs again. In this paper, we proposed a dynamic variable-
width striping RAID (DVS-RAID) for SWDs to reduce the
parity updating cost. DVS-RAID never overwrites the old data,
always constructs a new full or partial stripe (variable-width
stripe), and writes to the SWDs through appending. In addition,
taking the access characteristics of SWDs into consideration,
we present a new write cache management that exploits both
spatial and temporal localities. The experiment with six real-
world traces demonstrates that DVS-RAID exhibits a slightly
lower performance than HDD-based RAID under write-intensive
workloads with frequent updates. For some read-dominated
or sequential write-dominant workloads, or workloads with
infrequent updates, DVS-RAID even shows a better performance
than HDD-based RAID.

I. INTRODUCTION

Magnetic hard disk drives have spanned nearly a 60-
year product history and this technology continues to be a
principal means of storing data in most computer systems
today. This is the result of many attractive attributes of HDDs
including areal density on the disk media as well as the price
per gigabyte. However, the currently employed Perpendicular
Magnetic Recording (PMR) is fast approaching its density
limit and the industry is eager for the introduction of new
technology to overcome the limit [6], [10].

Shingled Magnetic Recording (SMR) is a new HDD record-
ing technology designed to increase density beyond the limits
of traditional PMR. In the simplest terms, SMR is a new
hard drive technology that allows the tracks on a platter
to be layered on top of each other, just like roof shingles
on a house, to increase platter density or tracks per inch
(TPI). SMR requires minimal manufacturing changes because
it retains the use of existing disk head and media technology.
This is why SMR is the first technology to reach market:
5TB and 8TB drives are available from Seagate and 10TB
drives are available from HGST, while other technologies
remain in the research stage, such as Heat-Assisted Magnetic

Recording [7], Microwave-Assisted Magnetic Recording [8]
and Bit-Patterned Media [9].

SMR increases the areal density by overlapping the neigh-
boring tracks which results in destructive random writes and
in-place updates [4]. A fundamental limitation of shingle write
disks is their inability to carry out simple update-in-place write
operations. That is to say, data has to be written sequentially
onto the tracks in order not to destroy the valid data on the
subsequent tracks. Alternatively, we have to safely read the
impacted valid data in the subsequent tracks out first before
writing/updating to the current track and then write those
impacted valid data back afterwards. In this way, extra read
and write operations are incurred as an extra cost, which is
known as the write amplification problem.

The challenge of designing a storage device that employs
shingled recording is then to allow an unrestricted write
access from the hosts perspective, despite the restriction on
the physical write process. Generally, there are two types of
SWDs: the drive-managed SWDs and the host-managed/host-
aware SWDs. Drive-managed SWDs provide block interface to
the upper level applications such as file systems and databases.
On the other hand, host-managed/host-aware SWDs are simply
raw devices and rely on specific upper level applications to
interact with the PBAs directly.

All these new high-capacity SMR disks are designed for
cloud datacentres and for cold storage applications (archives).
Although SSD prices have been falling drastically in the last
few years, compared to hybrid arrays, all-flash arrays are still
very expensive. A hybrid storage array uses a combination
of spinning disk drives and flash SSDs. Hybrid storage takes
advantage of the pros of each type of storage and uses
those to minimize the disadvantages of each. A hybrid array
typically uses hard disk drive-based storage arrays for storing
the majority of the cold data and solid state drives for storing
and accessing the most commonly used data.

Since SMR is leading next generation disk technology and
more and more SWDs will be widely used in hybrid storage
system, there is a great need to look over the current storage
techniques based on HDDs again. Because the characteristics,
limitations and advantages of SWD are sure to impact the
current techniques based on HDDs. RAID system is the one
storage technique we investigate here. A RAIDS disk array
utilizes a large number of commodity inexpensive HDDs in

978-1-5090-3315-7/16/$31.00 ©2016 IEEE

parallel to achieve higher performance as well as incorporating
parity drives to obtain higher reliability with low storage cost.
RAIDS5 which supports concurrent access of small blocks is
currently regarded as one of the most promising approaches for
providing highly reliable low cost secondary storage systems.
Therefore, in this paper, we mainly investigated the challenges
and designs of integrating SWD into RAIDS system. Further-
more, we study what impact the introduction of SWDs has on
the design of cache for SWD-based RAID system.

We propose a dynamic variable-width striping RAID for
SWDs to reduce the parity updating cost. Our contributions
are summarized as follows:

e We propose DVS-RAID for SWDs. It dynamically gen-
erates a new full or partial stripe and appends new data
to the tail of the existing data.

o A write cache management that considers the properties
of SWD is designed for DVS-RAID.

e« We implement a DVS-RAID simulator and evaluate it
under different kinds of workloads. The results show that
DVS-RAID shows a better performance than HDD-based
RAID under read-dominant or sequential write-dominant
workloads.

The rest of the paper is organized as follows. Section II gives
the background of segment-based data layout. We present our
DVS design in section III and the write cache management in
section IV. We describe the experimental setup in section V
and evaluate the design in section VI. Related work is present-
ed in section VII, and the conclusions are given in section VIII.

II. BACKGROUND

Shingled writing takes advantage of the fact that the mag-
netic field required for a read is smaller than that required for a
write. Shingled writing leverages this property by overlapping
the currently written track with the previous track, leaving only
a relatively small strip of the previous write track untouched.
The remaining track is therefor narrower than when it was
originally written, but remains readable. In this manner, tracks
are ultimately placed closer together, resulting in the capacity
gain. The write head is wider than a single track, meaning
when data is written to an SMR hard drive, data must be
written sequentially so the writer does not destroy data on the
overlapping tracks. In other words, while SMR can deliver
the much needed capacity gains, it dose so by sacrificing the
random write capabilities of the device.

To deal with the expense of write amplification, SMR breaks
the disk surface into smaller pieces called regions, consisting
of a set of consecutive tracks. Regions are then separated by
a gap called the Region Gap. The width of the Region Gap
is just enough to ensure that a write to the last track of a
region does not interfere with a write to the first track in the
next region. Thus, breaking the disk into regions effectively
reduces the write amplification to the size of the region in the
worst case. Despite the improvement, this solution is far from
ideal, even when region sizes are a modest 64MB, let alone
multi-GB sized regions.

Region Gap

Fig. 1. Segment-based data layout

A. Segment-based data layout

In HWSR [3], we proposed a segment-based data layout
management to reduce the write amplification of SWDs.

Figure 1 shows our proposed segment-based data layout
management. The disk surface is first broken into shingled
regions. Then a shingled region is further divided into seg-
ments of the same size in the radial direction. Each segment
has a unique Logical Segment Number (LSN). In each seg-
ment, the sectors in the same track constitute a logical data
chunk. Figure 1 shows an example of four regions, with eight
segments in each region. As shown in the Fig.1, each region
is divided into eight segments, each segment (S0-S32) has
four data chunks (CO, C1, C2, and C3), and each chunks is
composed of several consecutive sectors in the same track.
Within a region, the logical addresses of two adjacent segment
are consecutive. Within a segment, the logical addresses of two
chunks on the adjacent track are consecutive. When writing
sequential data chunks to a segment, the data chunks are laid
out in the radical direction. Thus, if data in segment S1 is
updated, its neighbor segments S2 and SO are not affected.

In segment-based SWD, a write or update operation over-
writes the whole segment in the worst case. The segment
size is much smaller than a region. Generally, the write
amplification of data layout based on segmentation is 1/n
of traditional data layouts, where n is the total number of
segments in a region.

III. DVS-RAID FOR SEGMENT-BASED SWDs

In this section, we first briefly discuss the problem of
traditional RAIDS for SWDs. We then describe our proposed
DVS-RAID for segment-based SWDs. In this section, we first
briefly discuss the problem of traditional RAID-5 for SWDs.
We then describe our proposed DVS-RAID for segment-
based SWDs. A DVS-RAID is a hybrid storage array that
employs high-performance SSD for read caching and write
buffering. In section IV, we will elaborate on SSD cache
management algorithm for DVS-RAID. DVS-RAID has three

Raid Controller

Cache Management Address Mapping

[T [1
Disk 0 Disk 1 DiékZ Disk 3 Disk 4

DO D1 D2 D3 PO
D4 D5 D6 P1 D7
D4' D1' D2' D3' PQ'
P1'
l:llnvalid data :]Valid data

Fig. 2. Traditional RAIDS for SWDs

major functions, namely data organization, maintenance of
address mapping table, and garbage collection. We will discuss
them in details in the following section.

A. Traditional RAIDS for SWDs

Figure 2 shows the problem of traditional RAIDS for SWDs.
At the beginning, data chunks DO-D3 and parity PO comprise
stripe 0 and data chunks D4-D7 and parity P1 comprise stripe
1. Then we assume that D1-D4 are updated. In traditional
HDD-based RAIDS, this is a simple task as updated data will
simply overwrite the old data. However, since overwrites are
not possible in shingled write disks, the updated data is written
to a new location. Meanwhile, the parity data needs to be
updated through either read-modify-write or reconstruct-write.
Finally, the old data must be invalidated and the stripe infor-
mation is updated to reflect the changes of the corresponding
stripe.

There are limitations to this approach. First, whether read-
modify-write or reconstruct-write is employed, the old data
must be read before calculating the new parity. This is also
true for traditional HDD-based RAIDS systems that require
four disk accesses to write a data chunk. Second, the small
write problem is aggravated severely by the inherent property
of SWDs that can carry out simple update-in-place write
operations, resulting in tremendous write amplification. Third,
when writes are not updates to existing data but writes of
totally new data, the data cannot be written until the stripe
becomes full, leaving open a window of vulnerability. For
example, in Figure 2, if new data chunks D8 and D9 arrive,
a parity chunk cannot be calculated for these pages that form
a partial stripe, and thus these chunks cannot be written until
a full stripe is formed, that is, another two data chunk arrive.

B. DVS-RAID

1) Data organization: We propose, Dynamic Variable-
width Striping RAID (DVS-RAID or simply DVS) for
segment-based SWDs to reduce the parity updating cost. DVS
divides the whole space of the disk array into Segment-based
Stripe Groups (SSGs). A SSG is composed of physical chunks
that comprise a stripe, which means that these physical chunks
are all of the same segment number. For example, as shown in
Figure 3, segment SO of all SWDs comprise SSGO, segment
S1 of all SWDs comprise SSG1, and so on.

The key feature of the scheme is that, within a SSG, DVS
dynamically constructs a new full or partial stripe as need

Raid Controller
Cache Management Address Mapping
[
I T 1 T 1
Disk O Disk 1 Disk 2 Disk 3 Disk 4
\

o DO o D1 o D2 o D3 o PO

1 D4 1 D5 1 D6 1 P1 1 D7
so4 2| D8 sod 2| D9 so4 2| P2 so4 2| D10 so 2| p11 SSGO

3] D12 3] P3 3] D13 3] D14 3] D15

4 P4 4 D16 4 D17 4 D18 4 D19

0::DO:: o2 0p:D2: 0f:-D3: of:-P0

1} D4 1} D5 11::D6 1P 1} D7
s14 2—oa s14 2—os3 s 2Fp2 s14 23’ s =Pz SSG1

3| D8 3 D9 3 P3 3 |D10 3 D11

4 [ph2 A/ Pa 4| D13 4 4

Fig. 3. Data organization in DVS-RAID

be. The new stripe is composed of the newly written or
updated chunks from different SWDs. The data chunks of the
new stripe are written to the tail of their respective segment
through appending. The stripe size of the new stripe may vary
(up to the full stripe size) and not be fixed. That is to say,
whenever the data chunks of the same segment number (i.e.
those data chunks belong to the same SSG) are destaged from
storage controller’s write buffer to SWDs, DVS generates a
new stripe no matter whether the data chunks are newly written
or updated. DVS never overwrites the old data and always
creates a new stripe.

Figure 3 shows how data chunks are organized in DVS-
RAID for segment-based SWDs. SSGO in Fig. 3 shows a data
mapping like a traditional RAIDS with a total of 5 disks, where
Di represents data block i and Pi represents parity block i. PO
contains the parity of data blocks DO, D1, D2, and D3.

Now let us take the example given in SSGI to illustrate the
rationale behind DVS-RAID. At the beginning, with valid user
data, DO-D7, DVS generates two new stripe 0 and 1 and stores
them like in SSGO. And then, we assume that data chunks
D2-D5 are modified. With DVS, the controller dynamically
constructs a new stripe with updated data D2’-D5’, simply
calculates the new parity for these data, and writes them at
the tail of segment S1 of their respective SWDs along with
the parity value. After writing, the controller simply marks the
old data as obsolete. There is no need to read the old data.
The old data is implicit redundant data that can be used to
data recovery in case of SWDs failures.

Then, we consider the case where only part of the stripe is
written/updated. Continuing the previous example, assume that
least recently accessed data D8 and D9 are being destaged. At
this point, DVS has three choices. First, DVS may choose to
wait for data to form a full stripe. In this case, many least
frequently accessed data, such as D8 and D9, would reside
in the cache for very long time, which pollutes the buffer
cache. Second, DVS may choose to read the old data D10
and D11 from the disk. And then DVS generates a new stripe
and write the stripe to disk. However, this method incurs for
four extra disk accesses - two to read D8 and D9 and two to

LCN PCN Stripe # Disk0 Diskl Disk2 Disk3 Disk4
DO 0:1:0

D1 1:1:0 0 DO D1 D2 D3 P

D2' 2:1:2

D3 [3:1:2 1 D4 D5 D6 P D7
D4' 0:1:2

D5’ 1:1:2 ' ' ' '

¢ 7T 2 D4 D5 D2 D3 P

D7 4:

DS 0:1: 3 D8 D9 P NUL NUL
D9 1:1:

D10 3:1: 4 D12 P D13 D10 D11
D11 4:1:

D12 0:1:4 5

D13 2:1:4

(@): AMT (b): SIT

Fig. 4. Maintenance of metadata in DVS-RAID

write them. Therefor, DVS chooses the third method. That is,
DVS chooses to write the data as-is forming a partial stripe
as shown in Fig. 3.

At last, we assume that D10-D13 are destaged to SWDs
array. DVS just simply constructs a new stripe and writes
the data chunks of the new stripe sequentially to the tail of
segment S1. D10 and D11 have been allocated to chunk index
3 of segment S1 in disk 3 and 4, respectively, while D12, P4
and D13 has been written to chunk index 4 of segment S1
in disk 0, 1, and 2, respectively. As we see in Fig. 3, data
chunks are always sequentially written to the segment, which
conforms to the access characteristics of SWDs.

2) Maintenance of metadata: Figure 4(a) and Figure 4(b)
respectively show the corresponding Address Mapping Table
(AMT) and Stripe Information Table (SIT) of SSG1 as shown
in Fig. 3. AMT is used to translate the logical address to
physical address. SIT records the stripe information of SSG
that is used for garbage collection and data recovery. Every
SSG has an Address Mapping Table and Stripe Information
Table. A Global Translation Table (GTT) is used to record
the physical address of all the AMT and SIT. The Global
Translation Table is small and entirely resident in the cache.

In a DVS-RAID with a total of N+1 disks, when a request is
received with the LBA of requested data, we can calculate its
LSN and Logical Chunk Number (LCN) by using Eqgs. 1 and
2. Using LSN as the index, we can obtain the SSG’s AMT by
looking up the GTT. Then, we can use the LCN as the index
to look up the AMT and thus get the Physical Chunk Number
(PCN) of the request. As shown in Fig. 4, a PCN is broken
into three components. For PCN (P1:P2:P3), P1 represents the
Disk ID, P2 represent the Logical Segment Number, and P3
represent the actual chunk index within segment P2.

LSN =
LCN =

LBA/(Sseq * N) (1)
(LBAmod (Seeq * N))/Seni (2

where Sgey and Scp, represent the segment size of the
segment-based SWD and the chunk size of DVS-RAID, re-
spectively.

In terms of managing the AMT and SIT, typically, the RAID
controller would load these tables partially or in their entirety
onto SSD cache during boot-up. When new data is written,
the two tables are updated to reflect this change. To maintain

consistency, the two tables are periodically destaged to disk
array. DVS-RAID can store the address mapping table and
stripe information table at fixed location, such as the middle
tracks of the disks. Because these metadata information is
frequently updated, a good choice is to put the two tables
in the Random Access Zone (RAZ).

3) Garbage collection in DVS: Because out-of-place-
update method is adopted in DVS-RAID, free stripes are
guaranteed to exist over which a newly generated stripe can
be stored. If there is no space to write to, a cleaning process,
called garbage collection (GC), is invoked to reclaim free
space. In DVS-RAID, garbage collection process is performed
by the unit of a Segment-based Stripe Group.

There are two different modes of garbage collection in
DVS, namely background and foreground garbage collection.
Foreground GC is always triggered by a write operation to the
SSG. For example, when there are data D14-D17 to be written
to SSG1 in Fig. 3, a garbage collection must be conducted to
make free space. On the other hand, background GC is usually
kick-started by a pre-set idle period and by calculating the
cost of garbage collection at that time. And the background
GC will be aborted by any foreground read or write request.
The main advantage of background garbage collection is the
gain in write performance.

The generic procedures performed in background GC of
DVS are as follows. Firstly, a SSG is chosen by the DVS as the
victim SSG. Generally, the SSG with the smallest number of
valid data chunks, the frequently accessed SSG, or the recently
accessed SSG will be chosen as the victim SSG. Currently,
DVS chooses the SSG containing the largest amount of invalid
data as the victim SSG. Secondly, valid data chunks are taken
from the selected SSG into the SSD write buffer, and then
DVS combines these data chunks with the cached data in the
SSD of the selected SSG. Thirdly, all the valid data chunks
are written to the selected SSG as described in section III-B1.
DVS always constructs a new full or partial stripe with the
valid data chunks. The old parity chunks are simply discarded
and new parity chunks are calculated. Meanwhile, the AMT
and SIT of the selected SSG is updated correspondingly to
reflect the changes.

Foreground GC is performed only when the free space will
be immediately needed in a SSG. Therefore, foreground GC
do not need to select a victim SSG, it just executes the last
two steps of the background GC process.

IV. CACHE MANAGEMENT FOR DVS-RAID

Read cache management is a well studied discipline and
there are a large number of cache replacement algorithms in
this context, see, for example, LRU, CLOCK, LRU-2, LRFU,
LIRS, MQ, ARC, CAR and SARC. In contrast, write caching
is a relatively less developed subject. In this section, we shall
focus on algorithms for write cache management in the context
of a storage controller equipped with fast, non-volatile storage,
such as SSDs. Meanwhile, we take the inherent property of
SWD into consideration when designing the algorithms.

SSG List Chunk LRU List

SSGO /“‘(diSkOF
— disk1 (—{D1}—{ b5 —{ D9 | —{D16]
SSG A
s disk2
List (B disk3 —|
SSG99 disk4 |—{ b7 |—{p11}—{p15]—{D19]
| :
$5G7 disk0
ssG | SSG6 disk1 —[B2}—{ b5 —{ D9]
LFU disk2
List H
: disk3 (—{p3}—{b10]
SSG1 disk4
Fig. 5. Write Cache Management

In DVS-RAID, we will manage cache in terms of Segment-
based Stripe Groups, which allows a better exploitation of
temporal locality by saving seeks and also spatial locality by
coalescing writes together. As shown in Fig. 5, each entry of
the SSG list represents a segment-based stripe group and has
a LRU pointer array. The size of the pointer array equals to
the number of disks in the DVS-RAID. We group chunks by
their logical segment number and chunks with the same logical
segment number are grouped together. For example, chunks
with LSN SO are grouped into the SSGO entry. In each stripe
group entry, chunks belonging to the same disk are maintained
through a linked list. In Fig. 5, each SSG entry has 5 Chunk
LRU list.

The basic idea of our proposed scheme is to divide the
whole SSG list into the SSG LRU list and the SSG LFU list.
In the whole SSG list, each entry has a reference count filed
to record the access count of the stripe group and a recency
bit to indicate whether the stripe group is in the SSG LRU
list. The SSG LRU list consists of recently accessed stripe
groups, while the SSG LFU list consists of stripe groups that
are candidates for eviction. The algorithm now proceeds as
follow.

When a chunk is accessed for the first time, a new SSG
entry is allocated if its SSG entry dose not exist in the cache.
Then the chunk is inserted into the corresponding Chunk LRU
list and the newly created SSG entry is inserted into the SSG
LRU list. And whenever the chunk in the SSG list (including
the LRU list and the LFU list) is accessed, its SSG entry is
moved to the MRU position of the SSG LRU list. At the same
time, the recency bit of the accessed SGG entry is set to one
and the reference count is incremented. When the SSG LRU
list is full and a new SSG entry is created (or the SGG entry in
the LFU list is accessed), the SSG entry in the LRU position
of the list is evicted and inserted into the LFU SSG list, and
its recency bit is set to zero.

The LFU SSG list is sorted by the reference count. The
evicted entry from the LRU list is always inserted in its correct
sorted position. When the cache occupancy reaches the High

Threshold, the destage process starts. The SSG entry with the
lowest reference count in the LFU list is selected as a victim.
In Fig. 5, SSG1 will be selected as the victim. Chunks D0-D3
and D4-D7 constitute two new full stripe, D8-D10 constitute
a new partial stripe, and the newly generated stripes will be
destaged to SWDs. In practice, the size of chunk LRU list
in the victim SSG would be large. Sometimes, only the few
chunks in the LRU position of the chunk LRU list would be
destaged. One problem with the use of reference count is that
certain entry may build up high reference count and never
be replaced. To solve this problem, we periodically set every
reference count, C, to [C'/2] at fixed interval.

In our proposed write cache management, the LRU list
always keeps the recently accessed SSGs in the cache and
most of cache hits are generated in this list, which represents
temporal locality. Meanwhile, the LRU list avoids destaging
the newly created SSG when the destage process starts. If we
decided to evict a SSG only depending on reference count, a
newly created SSG would be evicted out of the cache, because
the reference count of the newly created SSG must be low. As
the address space of an SSG is large, the disk head only need to
move a small distance between consecutive destages represent-
ing spatial locality. Based on above analysis, we incorporate
temporal locality, spatial locality, and access frequency into
our write cache management. Another advantage is that the
algorithm is simple and easy to implement.

V. EXPERIMENTAL SETUP

In this section, we describe the design of experimental
system, the basic hardware setup, and the workload charac-
teristics.

A. Design of experimental system

A schematic diagram of the experimental system is de-
picted in Fig. 6. The RAID controller simulator uses the
disk I/O traces as an input. For each request recorded in the
traces, a corresponding I/O request is issued to the simulator.
We evaluate the performance of DVS on raw banded SMR
disks without any interference from a drive-managed SWDs’s
internal remappings. We evaluate the performance of DVS
using regular hard disks, by banding them like SMR disks.
In the experiment, DVS splits the available LBA range into
fixed-sized bands, and reads/writes to the bands with SMR
like restrictions, emulating how one would read/write to a
SMR disk. We open the device file with O_DIRECT and
O_SYNC flags to bypass the cache effect of file system. Thus
the simulator can measure the actual response time for every
read/write request. For simplicity, we assume that the hard
disk has a fixed number of sectors per track, and the capacity
of each track is 8 x 1024 sectors (512 bytes in one sector).

B. The basic hardware setup

The experiments for the evaluation were run in a host with
a 2.13GHz Intel® Core' " Quad CPU and a 8GB RAM.
Our prototype system consists of five 1TB Western Digital
7200 SATA hard drives, a 120GB Intel 320 series SSD, and

Input
Traces

DVS-RAID Controller Simulator
Cache
Management -
PN Garbage / Mapping
SSD > Collection Table
SWD SWD SWD SWD SWD

Fig. 6. The experimental system

a small portion of main memory. In order to minimize the
interference, the operating system and home directory are
stored in a separate hard disk drive. Table I lists the detailed
description of the experimental setups.

Unless otherwise stated, the sample parameters are now
provided as follow. A region consists of 50 contiguous tracks
on the same surface, i.e., a segment has 50 chunks. The chunks
size is set to 128 sectors.

C. Workload characteristics

In order to fairly evaluate the performance of DVS-RAID,
we use real world I/O workloads that have meaningful contents
as well as access patterns similar to real applications. Six
real-world traces are utilized for performance evaluations.
The first four traces are collected from enterprise servers at
Microsoft Research Cambridge [27]. The last two traces are
collected from OLPT applications [26]. Table II summarizes
the characteristics of these traces.

For performance comparison purpose, we have evaluated
four different data organizations on the same testing environ-
ment:

1) RAIDS5 for HDD (HDD RAIDS): To establish a baseline,
we analyzed the performance of traditional HDD-based
RAIDS.

2) RAIDS for Sblock-based SWD (Sblock RAIDS): We
composed a traditional RAIDS storage system that is
made up of Sblock Architecture-based SWDs [13].

3) RAIDS for Segment-based SWD (Segment RAIDS): We
built a traditional RAIDS storage system that is made up
of Segment-based SWDs [3].

4) DVS-RAID for Segment-based SWD (DVS-RIADS):
This is our proposal.

VI. EVALUATION RESULTS

In this section, we demonstrate experimental results and
comparative analyse.

TABLE 1
EXPERIMENTAL SETUPS

oS Linux version 2.6.35.6-45.fc14.x86_64
CPU Intel(R) Xeon(R) CPU E5506 @ 2.13GHz

Memory Hynix DDR3 4GB 2R*4 PC3-10600R

Hard disk WD ITB SATA/64MB Cache 3Gb/s 7200rpm

SSD Intel SSDSA2CW120G3 3Gb/s SATA 120G

Emulated shingled disk 1TB
Parameters Block Size 128 Sectors
Region Size 32 Tracks
TABLE II
CHARACTERISTICS OF TRACES

Traces Total Unique Avg. Avg. # of # of Write
Name Requests | Data Size | Read Len | Write Len | Writes Updates | Percent
usr0 2,000,000 | 2.41GB 41848B 10559B 1,200,145 | 1,190,240 | 60.00%
web0 2,000,000 | 7.26GB 30778B 8828B 1,395,007 | 1,383,358 | 69.75%
prxy0 2,000,000 | 0.34GB 6296B 2444B 1,930,570 | 1,913,646 | 96.53%
mds0 1,211,034 | 3.09GB 24278B 7411B 1,067,061 1,055,832 | 88.11%
Financiall | 2,000,000 | 0.45GB 2569B 4082B 1,568,985 | 1,529,403 | 78.45%
Financial2 | 2,000,000 | 0.33GB 2228B 3033B 352,719 346,169 17.64%

A. Overall performance

Figure 7 shows the average response time for the various
RAID schemes under different traces. In the Fig.7, the x-axis
denotes all the evaluated schemes per workload, while the
y-axis represents the average response time in milliseconds.
The read cache size and write cache size are both set to
the 10% of the working size (the number of blocks being
accessed during execution). Generally speaking, among the
four schemes, traditional HDD-based RAIDS5 has the best
performance for most workloads as hard disks have not the
SWDs’ disadvantage of inability to serve update in-place
directly. However, DVS also provided superior performance
and exhibited only a slightly lower performance than HDD-
based RAIDS. Even for some read-dominated workloads or
sequential write-dominant workloads, DVS shows better per-
formance to HDD-based RAIDS. Take mdsO for example, the
average response time is 1.33ms, 0.99ms, 1.08ms, and 1.04ms
for HDD-based RAIDS, DVS, Segment RAIDS and Sblock
RAIDS, respectively.

As is known to all, traditional RAIDS suffers a perfor-
mance penalty during data updates, especially for small write-
dominated workloads. Among all these traces, financiall and
prxy0 workloads feature intensive small random data accesses.
Although data in SWDs cannot be updated freely in place
without overwriting the valid data in subsequent tracks if
any, the average response time is only slightly higher than
HDD-base RAIDS. The following reasons can explain why
DVS can provide satisfactory performance. First, when data
chunks are evicted from the write cache, DVS always construct
a new full or partial stripe and write data chunks to the
tail of their respective segment through appending. However,
traditional RAIDS has to read the old data for calculating the
new parity and write the new data to the disk along with
the new parity. Second, benefitting from segment-base data

E== HDD RAID5
DVS-RAID

[N Segment RAID5
Sblock RIAD5S

7

Average Response Time (ms)

Different Traces

Fig. 7. Average response time under different traces

layout management, DVS reduces the write amplification to
the size of the segment that is much smaller than a region,
which reduces the write amplification effectively. Third, within
a segment, data chunks are always written to the tail of
the segment. Compared to HWSR [3] that adopts in-place
update method, DVS reduces the number of segment defrag
operations, which improves system performance substantially.
Lastly, specially-designed cache management is used to solve
the problem of what to destage. The write cache management
not only can keep the hot data in the cache, but also can
decrease the number of GC operations.

As shown in Fig. 7, the average response time of DVS,
Segment RAIDS and Sblock RAIDS is all lower than tra-
ditional HDD-base RAID under mds0O workload. This result
is consistent with our institution. MdsO trace is collected
on media servers by Microsoft Research Cambridge. MdsO
workload is a write-intensive trace with large number of
sequential write requests. Another characteristics of media
server workloads is that the data in media server is not updated
almost. The read/write characteristics of SWDs is extreme
suitable for this kind of workloads. This is why SWD-based
RAIDS5 schemes perform a little better than HDD-base RAIDS
under mds0 trace.

For web0 trace, DVS even provided a little better perfor-
mance than HDD-based RAIDS. WebO0 trace is obtained from a
web service server and shows a write intensive access pattern.
And there are a larger number of sequential read requests.
More importantly, data chunks in web service server are almost
immutable unless the data is deleted. In other words, once the
data has been written, it will not be updated. The reason why
DVS perform a little better than HDD-base RAIDS for web0
trace is similar to the reason for mdsO trace.

Now, let us consider the read-dominated workloads. As
demonstrated in Fig. 7, DVS showed superb performance for
Financial2 trace, which is comparable to HDD-base RAIDS.
Although Financial2 trace is featured with intensive small
random data accesses, the read latency accounts for most
proportions of the total latency. This is also the reason why
SWD-base RAIDS schemes show comparable performance to
HDD-base RAIDS.

In Fig. 7, we can clearly observe that the average response
time of DVS is much lower than Segment RAIDS and Sblock
RAIDS, except that they show similar performance for mds0
trace. Like HWSR, the SWDs in Segment RAIDS adopt in-
place update method. That is to say, no matter which chunk
is updated in a segment, the whole segment of the SWDs
in Segment RAID5 must be rewritten. As a result, a lot of
time is spent in disk seeking and rotating, which degrades
the performance of Segment RAIDS severely. At the same
time, Segment RAIDS also faces the small-write problem
like traditional HDD-based RAIDS5 that aggravates the first
problem seriously. This is why Segment RAIDS does not
perform well. Among the four schemes, Sblock RAIDS has the
highest average response time. Sblock RAIDS has such a high
average response time is mainly because of high overheads
incurring by garbage collection. The garbage collection of
Sblock architecture moves tremendous data between the head
and the tail of Sblock circular buffer, which degrades Sblock
RAIDS5 performance severely. Meanwhile, Sblock RAIDS also
has the small-write problem. Due to segment-based data layout
management, the write amplification of Segment RAIDS is
reduced greatly, compared with Sblock RAIDS. Therefor,
Segment RAIDS provides better performance than Sblock
RAIDS for most traces.

From above discussions, we see that DVS-RIAD can pro-
vide satisfactory performance under various different traces.
For some read-dominated workloads, sequential workloads, or
workloads with infrequent updates, DVS shows a better per-
formance than traditional HDD-based RAIDS. Even for write-
intensive workloads with frequent updates, DVS provides only
a slightly lower performance than HDD-based RAIDS. Under
almost all traces, DVS provides much better performance than
Segment RAIDS and Sblock RAIDS.

B. Disk read/write operations

Figure 8 shows the actual number of read and write opera-
tions that is issued to the hard disks or shingled write disks.
Note that the y-axis scale of the two plot is different. The
number of read/write operations reflects the storage system
performance from the side. The storage system performance
becomes worse as the number of read/write operations become
larger. As shown in the Fig. 8, the number of read/write
operations for mdsO is smallest. Correspondingly, the four
storage schemes all show the best performance for mdsO
presented in Fig. 7, compared to the other five traces.

From Fig. 8, we can discover two observations. The first
observation is that the number of write operations is about two
order of magnitude larger than the number of read operations.
Two reasons can explain it. First, most traces are write-
intensive traces with large number of random write requests. In
other words, the number of write requests is larger than that of
read requests. Second, the write amplification problem caused
by small write problem of RAIDS and inability to directly
serve update in-place increase the number of write operation
tremendously. Another observation is that the number of write
operations is extremely large for workloads with frequent

E== HDD RAID5

DVS-RAID

6x10° [Segment RAIDS
7 SN Sblock RIAD5

The Number of Read Operations

mds0 prxy0
Different Traces

(a) The number of Read operations

ESSHDD RAID5
DVS-RAID

7 [Segment RAID5
0 SN Sblock RIADS

The Number of Write Operations

n
1 N
N

mds0 prxy0 usr0 web0
Different Traces

(b) The number of Write operations

Fig. 8. The number of Read/Write operations under different traces

updates. Financial2 workload is a good example for this
situation. Although Financial? is a read-intensive workload,
the number of write operations is extremely large because of
the existence of the write amplification problem.

C. The impact of cache size

Figure 9 shows the average response time of various cache
size over Financiall trace. In order to study the impact of
cache size on storage performance, we conduct experiments
with six configurations of write cache size, namely 5%,
10%, 20%, 30%, 40%, 50% of the working-set size. In all
experiments, the read cache size equals to the size of write
cache. Generally speaking, all the four schemes exhibit a better
performance as the cache size increases. HDD-based RAIDS
and DVS both show stable performance on different cache size
and DVS provides comparable performance to HDD-based
RAIDS5. However, Segment RAIDS and Sblock RAIDS is more
sensitive to the size of cache than HDD-based RAIDS and
DVS.

The stable performance of DVS is attributed to the excellent
write cache management described in section IV. A good
write caching algorithm has to solve two problems regarding
destaging: the destage order and the destage rate. The destage
order deals with leveraging temporal and spatial localities,
while the destage rate deals with guaranteeing free space
and destaging at a smooth rate. Our proposed write caching
algorithm not only considers spatial and temporal locality, but
also take the access frequency into consideration, which solve
the destage order problem efficiently. The destage rate problem
has been well studied in [19].

D. The impact of band size

Figure 10 shows the average response time of various band
size over Financiall trace. Our pervious study [25] have
demonstrated that the average response time of segment-based
SWDs increases monotonically as the band size increases. The
performance of Segment RAIDS also becomes worse as the
band size increases. However, increasing band size does not
necessarily degrade the storage performance of DVS-RAID

E== HDD RAID5
16 DVS-RAID5
[Segment RAID5
SN Sblock RIAD5

Average Response Time (ms
& o
1 1 1

N
N

°
I

a

8

3

8

N

8

S

< N\

B3

»

8

R

a

g

R

Cache Size

Fig. 9. The impact of cache size

E=S DVS-RAID
w2 Segment RAIDS

Average Response Time (ms)

7
%
/
%

70 tracks
Band Size (In tracks)

80 tracks 90 tracks

Fig. 10. The impact of band size

that is composed of segment-based SWDs. In DVS, data
chunks are always written to the tail of the segment through
appending, unlike HWSR that adopts in-place update method.
This is the primary reason why the performance of DVS does
not degrades proportionally as the band increases.

Moreover, as the band size increases, the segment size
become larger. As a result, when the SWD space utilization
is low, there is more free space for each segment. That

is to say, relative to small segment size, a larger segment
can provide more free space for subsequent writes, which
postpones the passive garbage collection. Therefor, when the
space utilization is low, increasing band size has a positive
effect on system performance.

As the band size increases, the latency for GC operation
increases proportionally, because the amount of data that need
to be read/write during GC becomes large. And more free
space in the write cache have to be available. So, the write
caching algorithm has to maintain a steady and reasonable
amount of free space and manage the destage rate well.

VII. RELATED WORK
A. RAID Technique

Several techniques have been proposed to reduce the over-
head for small writes in a HDD-based RAIDS. A parity
logging approach [22] was proposed to convert a large number
of small random writes to parity blocks on disks to a large
sequential writes, similar to the idea of log-structured file
system. A floating parity scheme [23] was presented that
sacrifices disk storage efficiency by relaxing the requirement
that modified data parity blocks be written back into their
original locations. The floating parity technique remaps dy-
namically parity blocks within disk cylinders to reduce the
rotational latency between reading and writing parity. In both
schemes, they attempted to reduce the disk seek time overhead
of parity updates, and the old data must be read from the disk
to calculate parity. However, DVS-RAID always generates
a new partial or full stripe and writes the stripe to the
disk array through appending, which complies with the write
characteristic of the shingled write disk.

The fast write [24] scheme uses a nonvolatile write buffer
to reduce write latency. The data in the write buffer and corre-
sponding parity are written at disks in the background. And the
parity should be updated at disk when the data is evicted from
the write buffer in the fast write scheme. STOW [19] describes
a spatially and temporally optimized write caching algorithm
that exploits not only temporal and spatial localities, but also
manages both the destage rate and destage order effectively in
a sigle powerful algorithm. Both schemes do not consider the
inherent properties of SMR. However, we take the inherent
property of SWD into consideration in our proposed write
cache algorithm.

B. SMR Technology

In shingled write disk, writing data to one track will
destroy data previously written on the overlapping tracks. The
challenge of designing a storage device that employs shingled
recording is then to allow an unrestricted write access from the
host’s perspective, despite the restriction on the physical write
process. Two basic strategies exist to handle this constraint
effectively. First, we can mask the operational differences of
a SWD by introducing a Shingle Translation Layer (STL)
as proposed by Gibson and Polte [4], [S]. Another possible
solution would be to use a stand-alone SWD with a specialized
file system or object store serving as the interface.

In order to improve the performance of SWDs, most existing
research works design new data layouts for shingled disks
[11]-[14]. In [11], [12], SWD is divided into log access
zones(LAZs) and random access zones(RAZs), where LAZs
store user data and RAZs store metadata respectively. Cassuto
[13] constructed an indirect system which contains two data
layout methods. The first one is a set-associative disk cache
architecture that divides SWD into data zones and cache zones,
where data zones are used for permanent data storage while
cache zones are used for caching incoming write/update re-
quests. Data zones are related to cache zones set-associatively.
The second one is S-block architecture which organizes data
as a circular log. SMRDB [15] is a key-value databese engine
for SWDs. SMRDB design and optimize an LSM tree based
data layout and management for SMR disks.

Several SMR-specific file systems have been proposed, such
as SMRfs [18], SFS [16], and HiSMRfs [17]. SMRfs present
a SMR file system for big data application that writes to
files only sequentially, never reopen a closed file for a write,
and never rewrite a block in the file. SFS is a host-managed
design for in-place update SWDs. And SFS is specially
design for video recorders/set-top boxes. For other workloads,
performance obviously take a bit.

There are some other works on SWDs, which is compli-
mentary to our work. Lin [21] proposed H-SWD to reduce
the garbage collection of circular log by using a hot data
identification mechanism. Jones [2] proposed using write
frequency as a metric to separate blocks in order to reduce
data movement during band compaction.

In order to evaluate the performance of SWDs, Pitchumani
[20] designs a novel SWD emulator that uses a hard disk
utilizing traditional Perpendicular Magnetic Recording and
emulates a Shingled Write Disk on top of it. Skylight [1] was
novel and drilled a hole into a SMR drive to understand how
Seagate SMR drives work.

VIII. CONCLUSIONS

Traditional HDD-based RAIDS5 has the small write problem.
The inherent weakness of shingled magnetic recording is the
inability to serve update in-place directly, i.e., writing to a
given data track requires rewriting its subsequent tracks. If we
used the original RAIDS technique to set up a RAIDS storage
system that is composed of shingled write disks, the small
write problem would be aggravated severely by the weakness
of SMR, resulting in tremendous write amplification. In this
paper, we proposed a dynamic variable-width striping RAID
for SWDs to reduce the parity updating cost. Meanwhile, we
also design a write cache management specially for SWDs.
Experimental evaluations under a variety of I/O intensive
workloads show that DVS-RAID can provide satisfactory
performance and the performance is not sensitive to the cache
size. Meanwhile, increasing band size does not necessarily
degrade the performance of DVS-RAID. However, we should
note that the write caching algorithm has to maintain a steady
and reasonable amount of free space and manage the destage
rate well as the band size increases.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their constructive comments. This work is sponsored in part
by the National Natural Science Foundation of China under
Grant No.61472152, the National Basic Research Program of
China (973 Program) under Grant No.2011CB302303, and the
National Natural Science Foundation of China under Grant
No0.61432007 and No.61300047.

REFERENCES

[1] A. Aghayev and P. Desnoyers, “Skylight-a window on shingled disk
operation, in Proceedings of the 13th USENIX Conference on File and
Storage Technologies. USENIX, Feb. 2015, pp. 135C149.

[2] S. N. Jones, A. Amer, E. L. Miller, D. D. E. Long, R. Pitchumani, C. R.
Strong, “Classifying data to reduce long term data movement in shingled
write disks,” in Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), 2010, pp. 1-9.

[3] Jiguang Wan, Nannan Zhao, Yifeng Zhu, Jibin Wang, Yu Mao, Peng
Chen, Changsheng Xie, “High Performance and High Capacity Hybrid
Shingled-Recording Disk System,” in Proceedings of IEEE Cluster, 2012,
pp. 173-181.

[4] G. Gibson, and G. ganger, “Principles of Operation for Shingled Disk De-
vices,” Technical Report CMU-PDL-11-107, Carnegie Mellon University,
2011.

[S] G. Gibson and M. Polte, “Directions for shingled-write and two-
dimensional magnetic recording system architectures: Synergies with
solid-state disks,” Carnegie Mellon University Parallel Data Lab, Tech.
Rep., May 2009, CMU-PDL-09-014.

[6] Y. Shiroishi, K. Fukuda, I. Tagawa, S. Takenoiri, H. Tanaka, and N.
Yoshikawa, “Future options for HDD storage,” IEEE Transactions on
Magnetics, Vol. 45, no. 10, Oct. 2009.

[71 M. Kryder, E. Gage, T. McDaniel, W. Challener, R. Rottmayer, G. Ju, Y.-
T. Hsia, and M. Erden, “Heat assisted magnetic recording,” Proceedings
of the IEEE, vol. 96, no. 11, pp. 1810-1835, Nov. 2008.

[8] J. -G. Zhu, X. Zhu, and Y. Tang, “Microwave assisted magnetic record-
ing,” IEEE Transactions on Magnetics, Vol. 44, no. 1, pp. 125-131, Jan.
2008.

[9] R.L. White, R. M. H. New, and R. F. W. Pease, Patterned media: A viable
route to 50 Gbit/in? and Up for magnetic recording?,” IEEE Transactions
on Magnetics, Vol. 33, no. 1, pp. 990-995, Jan. 1997.

[10] R. Wood, “The feasibility of magnetic recording at 1 terabit per square
inch,” IEEE Transactions on magnetics, Vol. 36, no. 1, pp. 36-42, Jan.
2000.

[11] A. Amer, D. D. E. Long, E. L. Miller, J.-FE. Paris, and S. J. T. Schwarz,
“Design issues for a shingled write disk system,” in Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), 2010.

[12] A. Amer, J. Holliday, D. D. Long, E. Miller, J.-F. Paris, and T. Schwarz,
“Data Management and Layout for Shingled Magnetic Recording,” IEEE
Transactions on Magnetics, vol. 47, no. 10, pp. 3691-3697, 2011.

[13] Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,
“Indirection systems for shingled-recording disk drives,” in Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), 2010.

[14] D. Hall, J. Marcos, and J. Coker, “Data handling algorithms for
autonomous shingled magnetic recording hdds,” IEEE Transactions on
Magnetics, vol. 48, no. 5, pp. 1777-1781, may 2012.

[15] R. Pitchumani, J. Hughes, and E. L. Miller, SMRDB: key-value data
store for shingled magnetic recording disks. In Proceedings of the 8th
ACM International Systems and Storage Conference, May. 2015.

[16] D. Le Moal, Z. Bandic, and C. Guyot, “Shingled file system host-
side management of shingled magnetic recording disks,” in Consumer
Electronics (ICCE), 2012 IEEE International Conference on, jan. 2012,
pp. 425-426.

[17] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim, “HiSMRfs:
A high performance file system for shingled storage array, in 2014
30thSymposium on Mass Storage Systems and Technologies (MSST).
IEEE, 2014, pp. 1C6.

[18] Suresh A, Gibson G, Ganger G. “Shingled Magnetic Recording for Big
Data Applications, CMU-PDL-12-105, 2012.

[19] B. Gill, M. Ko, B. Debnath, and W. Belluomini, “STOW: A Spatially
and Temporally Optimized Write Caching Algorithm,” In USENIX ATC,
Jun. 2009.

[20] R. Pitchumani, A. Hospodor, A. Amer, Y. Kang, E. L. Miller, and D. D.
E. Long, “Emulating a shingled write disk,” in Proceedings of the 20th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), Aug. 2012.

[21] C.-L Lin, D. Park, W. He, and D. Du, “H-swd: Incorporating hot data
identification into shingled write disks,” in Modeling, Analysis Simulation
of Computer and Telecommunication Systems (MASCOTS), 2012 IEEE
20th International Symposium on, aug. 2012, pp. 321-330.

[22] D. Stodolsky, G. Gibson, and M. Holland, “Parity Logging Overcoming
the Small Write Problem in Redundant Disk Arrays, Proc. 20th Ann. Intl
Symp. Computer Architecture (ISCA 93), pp. 64-75, 1993.

[23] J. Menon, J. Roche, and J. Kasson, “Floating Parity and Data Disk
Arrays, J. Parallel and Distributed Computing, vol. 17, nos. 1/2, pp. 129-
139, 1993.

[24] J. Menon and J. Cortney, “The Architecture of a Fault-Tolerant Cached
RAID Controller, ACM SIGARCH Computer Architecture News, vol. 21,
no. 2, pp. 76-87, 1993.

[25] Dan Luo, Jiguang Wan, Yifeng Zhu, Nannan Zhao, Feng Li, and
Changsheng Xie, “Design and Implementation of a Hybrid Shingled Write
Disk System”, IEEE Transactions on Parallel and Distributed Systems,
no. 1, pp. 1, PrePrints, doi:10.1109/TPDS.2015.2425402

[26] Financiall.spc and Financial2.spc. http:/traces.cs.umass.edu/index.php/
Storage/Storage. 2002.

[27] MSR Cambridge Traces. http://iotta.snia.org/traces/388. 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

