

Scalable Object Storage with Resource
Reservations

and Dynamic Load Balancing

Alex Aizman and Caitlin Bestler, Nexenta Systems, Inc. Santa Clara, CA 95050

Abstract—Scale-out distributed storage clusters require
efficient selection of the storage targets holding replicas.
This requires coordinated allocation of target IOPS,
target persistent storage capacity and network
bandwidth. The current generation of distributed storage
solutions mostly select storage targets using consistent
hashing. Implementations have become significantly
more sophisticated than the algorithm originally
presented for Amazon Dynamo. They (consistently) yield
consistent locations for a given combination of content
and clustered topology. But none of them consider
dynamic factors, such as current work load or remaining
capacity. Moreover, non-dynamic target selection leads to
uneven distribution of network traffic. Uneven resource
distribution underutilizes available capacity. We present
an alternative solution, the Replicast protocol, which
combines dynamic load balanced scheduling, multicast
messaging and reservation-based payload delivery.
Replicast has been implemented and is being deployed in
a commercial solution called NexentaEdge. To evaluate
Replicast for large and super-large clusters, we use a
discrete event simulation framework called SURGE. In
this paper, we compare the results of simulated object put
benchmarks with models for conventional storage
clusters that use consistent hashing and reliable unicast
connections to transfer content.

I. INTRODUCTION

Most current generation storage clusters use a
variant of consistent hashing to distribute content.
These algorithms deliver much better scale-out and, as
the name implies, are based on a hash of the object or
file name and/or object or file content. These solutions
include Ceph, OpenStack Swift, GlusterFS and many
others. These solutions all assume that scale-out storage
requires a method for target selection which does not
utilize location tracking metadata. As a storage cluster
grows, maintaining explicit location tracking metadata
becomes increasingly difficult. In a large cluster,
adding or dropping storage targets becomes routine. A
hash of the name or content determines where the data
must be stored and hence where it can be located.

This paper describes a better method for selecting
targets. The problem we want to address is efficient
resource allocation in large distributed storage clusters.
From the general resource allocation perspective,
combined clustered resources should be shared,
common and fungible. Users do not care which disks
store which replicas of their data. But consistent

hashing selects a fixed set of targets independently of
their current utilizations. Scheduling become restricted
and therefore sub-optimal. We argue that resource
allocation decisions should be bounded only by the
available resources. In a distributed storage cluster,
allocations of network bandwidth, target IOPS and
target storage capacity are all interdependent: network
bandwidth gets allocated along a certain path, that path
then must lead to the servers that have available IOPS
and disk capacity to execute the corresponding storage
transaction. We can look at distributed storage cluster
as a special and specialized case of resource allocation
and scheduling – see [1] for instance, where the
problem of allocating network bandwidth is considered
alongside tasks of machine scheduling and page
caching.

We also believe that, in the context of resource
management, allocating/scheduling network bandwidth
separately from target IOPS is counter-productive.
Historically networking and storage are largely done
separately but subdividing the problem while honoring
common layering principles may not optimize the
ultimate answer – allocating just network bandwidth or,
separately, just storage IOPS, may not provide the
optimal resources to complete the entire task.

In this paper, we describe one networking protocol
designed for storage clusters. We benchmark, compare
and analyze its performance. Beyond the specifics of
this protocol, however, we wish to highlight the
benefits of dynamic load balanced I/O scheduling,
multicast messaging (in the control plane), and
reservation-based payload delivery – for storage
clusters.

This paper leaves out of scope the upper layers of
the storage stacks that include storage access layers
(block, file and object). The mechanisms we describe
apply to coarse grained object storage primitives:
getting and putting chunks. A chunk is the finest
grained unit that the system retrieves from or stores in
its distributed persistent storage. A chunk, or a “block”,
contains user payload and/or user or system metadata.
Replicast distributes chunks optimally and safely, using
a combination of consistent hashing and dynamic load
balancing.

978-1-5090-3315-7/16/$31.00 ©2016 IEEE

A. Problem Definition

Fully distributed storage clusters have many
initiators and many storage targets. There are too many
of each for the cluster to be controlled from a single
active node.

Fig. 1. Distributed Storage Cluster

The initiators may be collocated on the machines
that also host the end clients, or an initiator may act as
an application layer gateway providing a storage
service access point (for block, file or object APIs) and
bridging between an external network and the internal
storage network. Each storage target also acts as an
initiator when replacing lost replicas.

In a large fully distributed storage cluster processing
large numbers of storage transactions every second in
its Internal Storage Network (Figure 1), the following is
generally true:

• Multiple Replicas: A put transaction must
produce multiple chunk replicas on different
storage targets (typically, 3).

• No Location Tracking Metadata: Initiators
must be able to retrieve a chunk at a later time
without requiring location tracking metadata.

• Chunk Maintenance: Lost replicas (of any
chunk) or whole servers must be replaced by
copying surviving replica(s), preferably
automatically.

• Earliest Transaction Completion: We want
the earliest transaction completion (sufficient
number of target servers acknowledging the
chunk after its payload has been verified and
persistently stored).

• Chunk transfers are relatively short in
duration. Mid-transfer rate adjustments do not
speed up the I/O sufficiently to justify added
complexity and overhead.

• Traffic is sparse. At any given instant only a
small fraction of potential node-to-node flows
are active.

• Traffic is effectively random. The current set
of active flows will be uncorrelated with the set
of active flows one second later.

It is our belief that for storage clusters where all of
the above applies, new Initiator  Target storage
protocols are required and are warranted.

B. Replicast

Replicast [2] is commercially available as part of
the NexentaEdge object cluster [3, 31]. The name is
derived from “Replication multicast/unicast”, although
the term simultaneously happens to be a full anagram of
the word “particles.” Replicast’s “particles” are,
effectively, chunks of data and metadata.

Replicast is a layer “4.5” protocol: it is above the
traditional transport layer 4 (TCP, UDP) but is still
functioning below the traditional application layers (5
through 7). Other protocols including iSCSI and
iWARP (RDMA over IP) have filled this 4.5 layer that
was not anticipated in the original OSI model.

Replicast multicast negotiations allocate network
bandwidth, target IOPS and target persistent storage
capacity. Replicast does not require any node of the
cluster to have complete knowledge of the resource
allocations. Initiators only know about the transactions
they are initiating. Each storage target only knows
about its own resources and commitments. There is no
need for all data to be collected at one central planning
node: just as with a market system, the interactions of
players with limited knowledge can still converge on
the correct answer even at vast scale. Research has
shown that market-style algorithms can optimally
allocate resources even in the absence of an actual
marketplace [4].

The rest of this paper is organized as follows.
Section II introduces Replicast in the context of
scalable distribution of content using load balanced
target selection. Section III surveys flow scheduling
techniques in a data center. As opposed to conventional
TCP or similar connection oriented transports,
Replicast uses bandwidth reservation to allocate
network resources. Section IV will measure, analyze
and evaluate Replicast performance and scalability
relative to unicast protocols.

II. LOAD-BALANCED TARGET SELECTION

The history of how storage clusters have met
increasing demands to scale can be understood in terms
of their networking. In the previous decade, pNFS [5,
6] decoupled metadata from the payloads: pNFS
metadata servers fully control target selection, but only
require metadata bandwidth. Payload transfers are
offloaded to other links and servers. Object-based
pNFS [6] and the early object storage systems (Google
File System [7] and Hadoop Distributed File System
[8]) limited the location tracking metadata to the
servers, offloading tracking of the exact location of
each chunk to each storage server.

Storage clusters with explicit location tracking
metadata can make near-perfect I/O load balancing
decisions in real time. The issue we address is how to
maintain load balancing when the storage cluster scales
to such an extent that maintaining and accessing

location-tracking metadata is no longer feasible. We
also consider whether it makes sense to sacrifice load
balancing in order to support linear scale-out via
uniform distribution. This paper presents a certain
perspective and definitive answers to these persistent
questions.

A. Consistent Hashing is Too Consistent

Consistent hashing was invented in the late 1990s
and popularized for storage clustering by Amazon’s
Dynamo [9]. It combines a uniform hash, preferably a
cryptographic hash, of the content with hashing storage
targets to a “hash ring”. Chunks are assigned to the next
n-replicas targets in different failure domains moving
clockwise through the ring. A key benefit of consistent
hashing is that an add or drop of a target from an n node
cluster only reassigns the location of 1/nth of the chunk
replicas.

Consistent hashing (CH) algorithms and derivatives are
used by the majority of recently produced distributed-
storage solutions including Ceph [10] and OpenStack
Swift [11]. Initiator driven allocation (whereby a
storage initiator (Figure 1) uses CH to select storage
targets) eliminates the need to maintain, track and
centrally manage chunk/block location metadata. The
requirement to generate the same location(s) on a later
get (read) means in turn that those selected locations
(targets) cannot be influenced by the dynamic factors
such as runtime utilizations of storage targets. This is
true of even a very sophisticated consistent hash
algorithm such as Ceph’s CRUSH, which factors in a
static cluster’s topology (CRUSH map).

Any valid consistent hash algorithm must produce
results that are statistically random, because any
detectable pattern could be exploited for a denial-of-
service attack (that could then deliberately misbalance
the load). Random or pseudo-random selection,
however, should be distinguished from load-balanced
distribution. The single most likely result of flipping a
coin 1000 times is indeed 500 heads. However, the
probability of getting exactly 500 heads is only
2.522501818% [12]. Replicast also hash-assigns each
chunk. However, (and this is its crucial difference from
all existing consistent hash implementations) Replicast
hashes to a sub-group, the “negotiating group.” It
subsequently load-balances within each independent
sub-group. Replicast does not track which storage
targets in the negotiating group have chunk replicas.
Therefore, background maintenance does not require
metadata updates (a big plus). Chunks are located
within the negotiating group using multicast messaging.

 Dividing the storage cluster into multiple multicast
groups limits the control plane traffic that any one node
receives but still provides load-balancing. (By contrast,
broadcasting requests to all nodes would produce far
too much control plane traffic.) The optimal size of a
Replicast negotiating group varies – for deployment

and testing we so far favored three times the default
replication count (9). Picking the best 3 out of 9 storage
targets will produce a better selection than selecting the
best 3 of 6. Doubling the size of the negotiating group
will also double the number of control plane requests
that each node in the group receives, but it will not
double the quality of the target selection. Of course, all
control plane bandwidth reduces the bandwidth
available for data.

B. Replicast Put Transaction

Replicast prevents congestion drops by governing
the source of every frame feeding the network queues
used for its traffic class. Replicast transactions take
place on an isolated network that only carries Replicast
traffic: the network may be physically separate or a
VLAN with its own L2 traffic class.

For a put transaction, an initiator multicasts a put
request specifying the cryptographic hash and size of a
to-be-put chunk to the negotiating group. In response,
each storage target in the group unicasts a “bid”
response indicating, among other things, the window of
time the chunk can be accepted (note that the
description in this section omits details related, for
instance, to distributed deduplication, capacity
management and error handling).

Each bid is extended by a configurable amount
(percentage of the minimal reservation required to
process a given chunk size) to allow the initiator to find
a common sub-window from multiple bids. Each bid
also implies that the corresponding target has
(tentatively) committed its resources to receive the
chunk within the given time window. The initiator
evaluates the collected set of response bids and then
makes a selection of the set of targets to receive the
chunk. This subgroup of selected targets is termed the
“rendezvous group”. A pre-selected rendezvous group
may be dynamically configured for the selected
membership. However, to avoid any need for custom
switch firmware it may be easier (or more practical) to
select a pre-configured multicast group that has the
desired membership. Independently of how the
rendezvous group was selected, its address and its
membership are included in the put accept message
multicast to the negotiating group.

The initiator then executes the rendezvous transfer
at the agreed time. In response, each member of the
rendezvous group acknowledges the complete chunk
transfer. There are corner cases, of course, when this
sequence will not result in creating sufficient replicas of
the chunk – the Replicast initiator then will simply retry
the transaction. Figure 2 shows one specific Replicast
interaction with initiators A, B, and C attempting to put
a chunk to negotiating group Y. From the perspective
of one member of this group denoted as server X, the
corresponding put requests arrive in close succession.
First, initiator A executes a put-request for the chunk

0x8fe1b and receives a bid indicating that the server X
is available right away.

Second, initiator B that has lost this particular
“race” to A for its own chunk 0xa428c also transmits a
put control message and receives a bid from the same
server X. The difference though is that the second bid is
shifted 120us into the future – the time that is defined
(in this example) by the width of the previous
reservation for the chunk 0x8fe1b.

Fig. 2. Replicast Put Transaction (example)

In the center of Figure 2, several things happen.
Initiator A accepts server X’s bid. Initiator B’s accept
message (multicast to group Y) does not include server
X, which translates as a cancel for the corresponding
server X’s bid. Server X in response will trim its
reservation for A to the specified duration, and cancel
its reservation for B. Initiator C then sends yet another
put-request. At this point, the server X will have
released its tentative resources reservation for B and
granted a new tentative reservation for C, quite likely
for the same time window previously reserved for B.
Due to the multicast nature of this control plane, same
or similar interactions play out in parallel with each
member of the negotiating group Y.

Notice a certain inevitable tradeoff of the
reservation based protocol, denoted with the curly
bracket on Figure 2. Let’s assume a put request from C
for its chunk 0x3b72e arrives prior to B’s cancelation.
In this case the server X’s bid that C receives will have
to account for both A’s and B’s reservations. And even
though initiator B will (in this example) cancel its bid,
initiator C will have to execute based on the
information that server X can only offer a time window
delayed into the future by, effectively, two put requests.
Server X could, of course, eliminate this scenario by
waiting for the put-accept message from B prior to
responding to C. The model that we describe in this
paper, and the NexentaEdge product [3], both favor
zero latency as far as control plane responses.

C. Retrieving Chunks

Replicast uses multicast messaging to eliminate the
need to store location tracking metadata. A chunk is
retrieved from a negotiating group as follows:

• The initiator multicasts a get request to the
negotiating group for the desired chunk.

• Each storage server in the group that holds a
replica of the chunk responds with a bid on
when it (the server) could deliver the chunk.
Those that do not have the chunk so indicate.

• The initiator then multicasts an accept message
to the negotiating group specifying which server
should respond. The initiator does not need to
wait for all responses when fetching a payload
chunk.

• The selected server sends the chunk to the
initiator.

This paper leaves out of scope optimization
mechanisms that would have storage targets (lazily)
sharing their selected server sets to enable more narrow
multicasting to the probable locations. For payload
chunks false positives could easily be retried (this type
of failure should be rare as it implies that all redundant
copies have been replaced prior to updating or
invalidating the cashes). For operations on metadata,
the idea is to narrow down last-version related
information. For simplicity, both the model and initial
implementation use multicasting to the negotiating
group to resolve both metadata and payload chunks.

III. NETWORK UTILIZATION

Most distributed storage clusters deployed today
“sub-contract” allocation of one of the most critical
resources - network bandwidth - to TCP. TCP is, of
course, designed for general purpose traffic. Chunk
transfers (chunk-flows) within a large fully distributed
storage cluster have a number of characteristics that call
for certain specific congestion controls. Flow
scheduling must be tailored as well to relatively short
flows between pseudo-randomly selected endpoints.
The fact that each and every stored or to-be-stored
chunk has a known size can be used to deterministically
optimize storage driven network communications.

In this section, we first survey works related to flow
scheduling and bandwidth reservation. Most propose
flow scheduling better suited to storage than generic
TCP. We will then discuss our preferred solution,
Replicast congestion control and scheduling.

A. Survey of Flow Scheduling Techniques

TCP/IP is the most widely deployed method of
allocating network bandwidth. Numerous studies have
shown the shortcomings of the classic TCP algorithm
for dealing with storage traffic. However, TCP
congestion control is not a static algorithm; it is
constantly improving [13]. This includes using more

sources of information for the network congestions
state and improving the rate adjustments made when
congestion is detected.

Datacenter TCP (DCTCP) [14] provides an
improved algorithm to determine congestion by
tracking ECN marking. Glenn Judd’s analysis of
DCTCP [15] cited issues with DCTCP sharing a
network with TCP, but those concerns would not be
relevant for storage clusters. It merely requires the use
of a distinct storage traffic class.

Timely [16] is a similar congestion control
algorithm which measures network congestion by using
precise timing to detect changes in packet round trip
times, rather than relying on switch ECN marking.
Survey of data center flow scheduling schemes [17]
discusses several non-TCP solutions. Many of these,
such as Rate Control Protocol (RCP) [18], require
special support from network routers and/or switches.
Such modifications are infeasible for commercial
deployment. Other schemes, such as Deadline Aware
Queue (DAQ) [19], have merit for general purpose data
center traffic that include very long flows. However,
they adjust rates during overlapping flows. With
storage clusters, each chunk transfer is short lived. A
simple scheduling algorithm that schedules the entire
chunk transfer is all that is in fact required.

DCQCN [20] is proposed for RoCE [21] networks
that incorporates the DCTCP algorithm with the QCN
(Quantized Congestion Notification) protocol
developed for IEEE 802.1 DCB (Datacenter Bridging)
[32]. RoCE is RDMA over Converged Ethernet,
effectively a port of InfiniBand over Ethernet. DCQCN
adds the benefits of in-path congestion notifications
with round trip congestion notification. OpenTCP [22]
proposed tracking congestion on a datacenter-wide
basis for Software Defined Networks and then using
this information to tune TCP on each sender with a
custom kernel module. OpenTCP relied upon a central
“oracle” to collect/process network status – a potential
impediment to scalability. Given relatively uniform
distribution of traffic in clusters local measurement of
congestion across all flows could provide a reasonably
accurate estimate of overall network congestion.

None of these techniques change the fundamental
contention-based sequence: pick an initial speed,
transmit, measure congestion, adjust speed and repeat.
Ongoing developments in the space improve
measurement of congestion, adjust the initial windows
or improve the additive increase and/or multiplicative
decrease to be more intelligent. These are
improvements over early implementations but they still
must generate congestion to adjust rates. The alternative
to “congest-then-adjust” strategy is to reserve network
bandwidth before it is used. A survey of flow
scheduling schemes in data centers [17] defined several
classifications for the scheduling algorithms. According
to the classification [17] of flow scheduling schemes,

Replicast is a non-TCP based deadline-aware protocol
without requirements for special hardware or software
on the switch (Figure 3).

Replicast is deadline-aware because every chunk-
flow has a known size (size of the chunk) and will
finish by a certain negotiated time. Replicast can also
be appropriately labeled “edge based” since the
clustered storage targets negotiate non-overlapping time
slots for each chunk-flow, which also means that the
flows do not interleave on the edge links. It is “one-
shot”: chunk transfers do not require rate adjustments
mid-transfer.

Fig. 3. Part of flow scheduling classification [17]

The only required switch support is limited to no-
drop Ethernet [34], which is common for enterprise
class switches. The following table compares where
and how congestion control is performed:

TABLE 1. WHERE/WHEN CONGESTION CONTROL IS DONE

Protocol How Often Where

Rate Control
Protocol

Per Frame Switch

DCTCP Per Frame Target OS stack

Replicast Per Chunk Replicast userland

at storage target

B. Reservation Based Delivery

Reservation based protocols execute extremely
efficiently during the reserved time windows. There are
inevitable idle intervals, though, in-between. The time
required to set up a reservation is determined by the
round trip time – efficiency of reservation based control
depends therefore on having chunks larger (on average)
than a certain threshold.

If the gaps between reserved transmissions are
small, the efficiency of reservations will be higher than
contention algorithms can achieve. Stream oriented
reservation protocols configure each switch on the path
to support the flow. This does not work for chunk
transfers. For example, supporting per chunk
reservations for 128 KB chunks would require tracking
tens of thousands of reservations per second for each
storage target on each switch along the path.

Replicast does not dynamically configure switches
for each chunk transfer. The switches are configured to
support all possible flows. Senders are only permitted

to transmit when they have a reservation granted by
each recipient. This is enforced by shutting off network
access for non-compliant nodes. Dynamic switch
enforcement is not required. Relying on nodes obeying
the reserve-first rule eliminates the cost of dynamically
reconfiguring switches but still requires the reservation
granter to understand all potentially competing flows.
Replicast targets continuously track their own flows
and grant subsequent reservations based on this
tracking information: no cluster-wide knowledge is
ever needed.

C. Captive Congestion Points

Replicast exploits specific network topology
including a non-blocking core. Figure 4 illustrates three
potential congestion points for a data center storage
cluster:

• Initiator: The initiator can apply rate shaping to
limit transmitted traffic to the desired rates. This
would also avoid periodic bursting of packets,
providing the same benefit addressed with
Paced TCP [23].

• Non-Blocking Core: The core network can be
provisioned as a non-blocking core.

Which leaves:

• Storage Target: In a distributed storage cluster,
each target can at any point in time be selected
by a random number of other clustered nodes.
The egress port to the storage target is,
therefore, the sole source of congestion (Figure
4).

Fig. 4. The three potential congestion points

Storage protocols, therefore, must be explicitly
designed to manage (or totally prevent) egress
congestion. In this paper we advocate one way: using
reservations. Replicast targets issue reservations for
their own CPU/disk resources and link bandwidth: one
reservation per chunk flow.

D. Replicast Bandwidth Allocation

The Replicast protocol divides link capacity through
each captive congestion point between contention
allocated and reserved bandwidth, and the contention
(aka unsolicited) bandwidth is used to create
reservations. The link capacity for the storage traffic
class is divided between reserved (data) bandwidth and
contention (control) bandwidth. Replicast transfers

payload chunks using the reserved bandwidth at the
negotiated rate. The sender does not pause waiting for
disk I/O to complete, nor does the recipient slow the
flow because it is running out of buffer space. Chunks
are transmitted from RAM to RAM. The reserved
bandwidth is therefore 100% utilized once the transfer
is initiated.

The sustained unsolicited rate must be lower than
the allocated unsolicited rate to allow for random
variation. The goal is to be confident that a surge in
unsolicited traffic will not result in a congestion drop.
No-drop Ethernet [34] marshals switch resources to
manage brief durations exceeding the sustained rate,
and eliminates any need to reserve specific time slots –
the service will resolve issues as long as the aggregate
of reserved and unsolicited frames does not exceed
available network buffering.

The (configurable) unsolicited rate must take into
account the number of unsolicited packets per each
chunk transfer, the size of the negotiating group relative
to the rendezvous group, average chunk size(s) and
read/write ratios. It is easy to come up with the worst
case estimation; questions of safe enough unsolicited
minimum as well as its runtime adjustment – those are
questions beyond the scope of this paper.

E. Rendezvous Transfers

Replicast bulk payload transfers are called
“rendezvous transfers”. They may be performed using
multicast messaging to multicast groups which
represent a specific subset of a negotiating group or
using unicast addressing to a specific target. The
variant using multicast payload delivery is referred to as
“Replicast-M” (“M” for multicast).

Rendezvous transfers are performed after control
plane exchanges have established a reservation granted
by each of the receivers. The transfers occur at the
provisioned rate for reserved payload. Senders can
“floor it” immediately. The feasibility of using
unreliable datagrams to provide reliable pre-negotiated
transfers was demonstrated for MPI libraries using
InfiniBand Unreliable Datagrams [24, 25]. Replicast
extends this concept to multiple deliveries.

F. Replicast-Hybrid

The Replicast-H variant of the Replicast protocol
(“H” for hybrid) combines multicast control plane with
unicast delivery. The hybrid solution is desirable when,
for instance, multicast rendezvous groups cannot be
dynamically configured or preprevisioned in sufficient
numbers. With this variation, a put transaction performs
the following steps:

• Similar to Replicast-M (Figure 2 above),
Replicast-H initiator multicasts a put-request to
the group, identifying the chunk, its compressed
size and the earliest time this initiator can start
transmitting the chunk’s payload.

• Each storage target in the group not already
holding the chunk responds with a bid
committing its resources and its bandwidth for
the specific window of time in the future.

• The initiator collects the bids and tries to select
multiple consecutive time windows for the
subsequent unicast transmission(s).

• The initiator then unicasts the rendezvous
transfers at the specified time(s).

• The selected targets each reply with a Chunk
ACK after it successfully saves the chunk to
persistent memory, or earlier in the event of any
error.

• The Initiator keeps repeating until the total
number of required replicas have been put.

Both Replicast-M and Replicast-H strategies rely on
reserved bandwidth and use a single acknowledgement
for an entire chunk transmission. A cryptographic hash
on every chunk verifies error free reception (and later –
retrieval) and also detects lost packets, however rare.
While the cost of full chunk retransmission is high, the
judgment call that we had made previously (based on a
realization that, for instance, traffic shaping in modern
data centers effectively prevents network congestion
drops) proved to be feasible and working.

G. Reliable Multicasting

Replicast uses unreliable datagrams. The general
problem of reliable multicasting has been well studied
[26]. However, reliable multicasting in a large
distributed storage cluster (the use case that we describe
here) – is a far more specific problem:

• Multicast delivery is to a handful of targets.
There is no “ACK implosion” problem from too
many targets acknowledging the transaction.

• The solution is constrained to networks with
extremely low physical error rates with
reservations to prevent congestion drops.

• Each chunk transfer is short, with a length
known before the transfer begins. No targets
attempt to join an in-progress delivery.

• Each chunk transfer can be verified by a
cryptographic hash of the chunk content.

Therefore, a simple acknowledgement of each
chunk transfer, with upper layer driven retries, is all
that is required to achieve reliable chunk transfers.

H. Multicast Delivery is Efficient

Multicast delivery is efficient: the initiator only
sends once to reach multiple targets. The authors’ initial
object storage design [27] sought to reduce the network
overhead of replication from three copies to two by
hybridizing network replication with local replication.
The prospect of zero extra transmissions motivated our
initial exploration of multicasting.

There's always a cost and associated tradeoffs in
almost any new design. Multicast delivery, for instance,
depends on the capability to find those 3 servers that
provided bids, intersection of which yields the ultimate
window of time sufficiently wide to execute the chunk.
This in turn motivates provisioning of extra-width into
each and every reservation, to increase the
corresponding chances. But each additional
microsecond in the reserved windows increases the
chances to delay subsequent reservations. As we
progressed with the design we found that, even
excluding multicast data transfers, using multicast load-
balancing and reservations still produces great benefit.

IV. DISCRETE EVENT SIMULATION

Our lab storage clusters have been running for some
time, but they unfortunately do not scale anywhere near
as large as Replicast is designed for.

To address this limitation, we developed SURGE –
a discrete event simulation framework written in Go
[29]. Complete and documented source code that
includes the framework and concrete models (including
basic Replicast) can be found at
https://github.com/hqr/surge. The results cited here
were generated with the build d92018f using bench.sh
script, also checked in.

Behind the gateways/initiators, there are storage
servers. Together, gateways and servers are referred to
as nodes and form a distributed cluster. Each simulated
node fully owns its configured resources: disk and
network interface, and runs in a separate “goroutine”.
The latter is a first-order primitive of the Go language
that multiplexes potentially hundreds of thousands of
goroutines onto OS threads. SURGE therefore is a fully
preemptive modeling framework that employs all
processor cores of the host to drive its models forward.
Each modeled node connects with all other nodes via a
pair of Go channels. SURGE’s event types include data
events that carry chunk payload and unsolicited control
messages.

Each simulated control and data event is precisely
timed, with the system time “ticking” in nanoseconds.
At each next tick the framework itself makes sure that
the modeled NOW does not advance until all the events
scheduled at NOW do in fact execute. The simulated
datapath uses 9000 byte jumbo frames. The configured
bandwidth is reduced by 1% for overhead. Each data
frame is a timed SURGE event. Initiators are most
often Application Layer Gateways (ALG) accessed
over a client network by the end user using standard
protocols. The impact of the client network and its
protocol selection is not modeled.

We only model put performance. The mix of get
versus put transactions, and their subtle performance
interactions (particularly related to caching) would
require more complex modeling and would force the

simulation to make many assumptions that users might
feel are unrepresentative.

A. The Common Model

The following model is henceforth assumed:

• All objects are decomposed into metadata and
payload chunks.

• Metadata chunks (typically one per object
version) are indexed by the object name and
version.

• Payload chunks, which are ultimately indexed
by a cryptographic hash of their content.

• There is a non-blocking no-drop network core
that connect a large number of edge ports. This
simulation models those ports as 10 GbE ports.

• All storage payload transfers occur on a
protected no-drop VLAN.

• Transmission errors are sufficiently rare that
they do not need to be modeled.

The simulation (with results presented in Section
“Results” below) only models put transactions. In
actual deployments, concurrent read and writes impact
each other. We did not simulate the reads (yet) at least
in part because (at the time of this writing) there is no
reason to believe that there would be an appreciable
benefit of Replicast reads over conventional reads.

As of the time of this writing, SURGE simulations
model each initiator working on a single chunk at a
time while NexentaEdge implementation begins
negotiations for the next chunk while finishing the
current chunk. The simulation can of course achieve an
extremely high level of parallelism by simply adding
more initiators. This would also be effective for a real
world storage cluster as well but would not be cost free.

B. UCH-CCP

A fair comparison requires simulating unicast
congestion control that was equal to the best TCP
congestion control algorithms. Rather than investing in
simulating a moving target, we modeled an idealized
unicast congestion algorithm that is better than any
actually deployed. Specifically, this hypothetical
algorithm dubbed “UCH-CCP” (Unicast Consistent
Hash using Captive Congestion Point) features:

• Consistent hashing for target selection.

• Unicast UDP that is used for both “connection”
setup and for chunk transfers.

• Dynamic reservations for payload transfers,
granted by the targets at connection setup times.

UCH-CCP relies on the reserved traffic class to
isolate it from non-storage traffic. This is a unicast
dynamic bandwidth reservation protocol. It allows the
sender to “floor it” after a single round trip. To avoid
any biasing, we have even compared against UDP, with

its lower overhead per packet, rather than TCP. Figure
5 illustrates the UCH-CCP pipeline stages:

Fig. 5. UCH-CCP Pipeline

"Chunk Put Request" initiates the flow. “Rate Init”
response form the target carries the initial rate
computed as proportion of the target’s bandwidth given
the current number of flows (to this target). “Rate Set”
represents additional optional rate adjustments (by the
target) during the flow. Once the entire chunk is
transferred, it is written to persistent storage (signaled
by “Disk Write Completion”) and then acknowledged
(“Replica Put ACK”). UCH-CCP (serial) variant could
assign all egress link bandwidth to one chunk at a time.
The UCH-CPP model [30] and simulated benchmarks
that we show in this paper use an interleaving strategy
to more closely resemble TCP/IP (the transport used
today by great majority of storage clusters).

Figure 6 illustrates a UCH-CCP interaction with
two initiators attempting overlapping chunk puts to the
same server. Initiator A receives the full rate (9.9 Gbps)
when it starts.

Fig. 6. UCH-CCP protocol (example)

When initiator B requests to put a chunk it receives an
initial rate of 4.45 Gbps while initiator A’s rate is cut to
the same. Once initiator A’s chunk transfer completes,
it receives its Replica ACK and initiator B’s rate is
increased to 9.9 Gbps.

C. Replicast

Figure 7 illustrates the put-chunk I/O pipeline of the
Replicast-H and Replicast-M protocols. These control
messages exchanged as part of each and every put
transaction were previously discussed in Section
“Replicast Put Transaction”.

Fig. 7. Replicast Stages

The Replicast simulations model UDP over IPv6.
The switch is assumed to have multicast forwarding
tables large enough to allow all required rendezvous
groups to be pre-configured.

D. Replicast-H(ybrid)

Replicast-H combines multicast negotiations with
unicast delivery. This provides the benefits of multicast
negotiations and use of reserved bandwidth for chunk
transfers, but sacrifices the benefits of multicast
delivery. As with UCH-CCP the link is still fully
utilized during a chunk transfer.

However, unicast delivery may be the preferred
solution when the network infrastructure cannot support
the required number of rendezvous groups.

E. Replicast-M(ulticast)

Replicast-M is modeled with static rate control for
unsolicited traffic. Each Initiator limits generation of
unsolicited requests to a configured rate. This rate is set
so that there is high confidence that the actual aggregate
unsolicited bandwidth will be below the bandwidth set
aside for unsolicited traffic. Rendezvous groups may be
dynamically configured. One method is to dynamically
specify the rendezvous group as the subset of the
negotiating group. The BIER (Bit Indexed Explicit
Replication) [28] protocol under development within
the IETF allows multicasting to a subset of a “BIER
Domain” to be identified by an explicit bitset. Replicast
can map each negotiating group to a BIER domain and
specify the targets of each rendezvous transfer with a
bitmask.

Alternately, rendezvous groups may be pre-
configured and dynamically selected. IPV6 MLD is
used to pre-configure every possible 2 or 3-member
subset of each negotiating group. The initiator can
select the pre-configured group because it has an
exclusive reservation for each of its members. Pre-
configuring rendezvous groups does limit the scale of
one cluster. If a negotiating group has 9 members, then
120 rendezvous groups can enumerate every 2 or 3-
member subset (9*8*7/3*2 + 9*8/2 = 120). Supporting
900 storage targets in a cluster and 9 targets per group
would then require 120 * (900/9) multicast forwarding
rules in each switch. Growing beyond 12,000 targets
would quickly exceed the table capacity for virtually all
existing switches and thus require either special
switches or partitioning of the storage cluster into
multiple federated clusters.

F. Results

Typical simulated benchmark took us anywhere
between 90 minutes and 6 hours on a 24-core system,
with every transaction timed and logged for later
analysis. These results correspond to a non-blocking
10GE core connecting 30 or 90 initiators putting to 90
targets. Simulated CPU is effectively unlimited. In the

benchmarks, initiators generate chunks (as fast as they
can) and store 3 replicas of each chunk on the targets.

Table 2 summarizes the results for 90 targets and 90
initiators for 16K, 128K and 1MB size chunks at disk
throughputs 400MB/s and 1000MB/s, respectively.
Chunk sizes are shown in the left column. Each cell of
the table contains 3 types of averages (means):
performance (chunks/sec), utilization of target disks
(%), and chunk put latency (microseconds).

TABLE 2. 90 INITIATORS, 90 TARGETS, 400MB/S DRIVES

Chunk uch-ccp replicast-m replicast-h

16K

536,950 c/s

70.6%

164.7us

635,750 c/s

83.6%

139.0us

525,100 c/s

69.0%

168.4us

128K

58,400 c/s

66.4%

1401.7us

80,700 c/s

90.6%

1039.8us

73,400 c/s

83.6%

1132.6us

1M

6,733 c/s

69.6%

10260.2us

8,067 c/s

85.6%

9210.8us

8,000 c/s

84.9%

8945.9us

The corresponding aggregate performance and
utilization numbers for each modeled protocol are listed
as well. Even for smaller size chunks, Replicast-M
achieves better latency and throughput than the other
two protocols. Figure 8 can help visualize the put-
chunk latencies for both Replicast-M and UCH-CCP.
Neither protocol creates any notable steady-state
patterns (such as the TCP sawtooth).

Fig. 8. Put latency – 30 initiators, 90 targets, 16 KB Chunks, 400
MB/s drives

The X axis on Figure 8 represents successive chunk
numbers from 1 to the maximum (number) performed
during this fixed-time benchmark. Figure 9 summarizes
the throughput for Replicast-M compared to UCH-CCP
and Replicast-H, for both 400 MB/s (left) and 1000
MB/s (right) drives.

Fig. 9. Put throughput comparison for 128K chunks

Replicast-H and Replicast-M show similar
performance with the slower drives but only Replicast-
M scales almost linearly with the faster drives: 2.18
increase in the throughout (relative to the 2.5x increase
in disk speed). Replicast-M scales even better for 1MB
chunks: 2.4 increase. The unicast protocols, meanwhile,
show less improvement, indicative of network
bottlenecks. On the other hand, the larger control plane
overhead is in part responsible for the Replicast-M
performance with 16 KB chunks.

Table 3 compares the impact of faster disk drives on
transactional latency. Similar to Table 2 above, the
results include average performance (chunks/sec), disk
utilization and put latency (microseconds). If the
network caused zero delays, the expected latency with
1000 MB/s disks would be 0.4 of the latency with 400
MB/s disks. Replicast-M scales extremely well for
medium and large chunks, while Replicast-H
outperforms its unicast counterpart for medium and
large chunks. Both Replicast “flavors” are clearly
impacted by the control plane overhead for 16 KB
chunks.

TABLE 3. 90 INITIATORS, 90 TARGETS, 1000MB/S DRIVES

Chunk uch-ccp replicast-m replicast-h

16K

918,500 c/s

48.1%

96.0us

907,400 c/s

47.4%

97.0us

632,200 c/s

32.9%

139.3us

128K

108,900 c/s

47.0%

784.7us

176,000 c/s

74.7%

489.5us

127,900 c/s

55.0%

673.0us

1M

13,475 c/s

48.4%

6042.9us

19,850 c/s

68.6%

4242.0us

16,075 c/s

57.1%

5163.8us

G. Lab Testing

NexentaEdge object cluster [3, 31] has been
available for beta users since late 2014. This solution
implements the Replicast protocol in user mode Linux.
Table 4 below shows NexentaEdge block throughput
performance for 16K chunks:

TABLE 4. NEXENTAEDGE PERFORMANCE – 16K CHUNKS

Chunk/s 23351.91

MB/s 396.12

Write Latency (us) 2.4505

• 2 application layer gateways (aka initiators)
• 10 storage targets, each with 128 GB RAM,

10x4 TB HDDs, 2x800 GB SSDs, 10 GbE
Ethernet

• Mellanox SX1024 switch

Results that we get in our lab are consistently better,
often 2 to 7 times better, than the performance of Ceph

and OpenStack Swift storage clusters on the same
(apples-to-apples) hardware configurations.

H. Replicast Strengths and Weaknesses

The simulation results confirm one of the primary
design goals of the Replicast protocol: better load-
balancing for both network bandwidth and target IOPS
results in higher storage backend utilization. As stated
in the Section “Problem Definition”, Replicast is
designed for a very specific set of workloads and was
never intended to perform as a general purpose
transport. From the general purpose transport
perspective, Replicast does have weak points:

• Transfers must be for known-size non-gigantic
chunks.

• The storage cluster membership must be
enumerated and have short cluster trip times.

Other shortcomings are evident in the simulation
results. As per discussion in Section “Load-Balanced
Target Selection”, tentative reservations which are not
ultimately accepted can delay bids for later put
requests. This reduces storage backend utilization and
increases transactional latency. For instance, given
176,000 chunk/sec average throughput for the 90
targets assembled in 10 groups (see Table 4, Figure 9),
the cluster-wide chunk arrival time would range
between 25us and 75us. Assuming medium 50
microseconds, the Poisson lambda for a storage server
would equal about 0.02. Thus, for any storage server
processing 128K put-chunk workload in this (90
initiators, 90 targets, 1000MB/s drives) configuration,
the probability of receiving a new put request during
the next 7 microseconds (the time required to send the
bid and receive a response) computes as: ࢌሺ࢚ሻ = ૚ − %13 = ࢚ࣅିࢋࣅ

Table 5 summarizes the probabilities for any given
target to receive a put while the prior reservation is still
tentative (that is, not yet accepted or canceled). Delayed
reservation from a single server does not necessarily
mean that the corresponding chunk will have to be sub-
optimally delayed: for this to happen and given the
group size 9, more than 6 servers of this group must be
delaying this particular reservation as well. Clearly
though, higher ratios of back-to-back reservations will
adversely affect performance:

TABLE 5. PROBABILITY OF (PUT REQUEST ARRIVING WHILE THE
PRIOR RESERVATION IS STILL TENTATIVE)

Chunk Put interarrival
time

 Poisson ࣅ
probability

16K 11us 0.09 46.7%

128K 50us 0.02 13%

1MB 500us 0.002 1.39%

As for smaller chunks, Figure 10 illustrates the
comparative performance of the protocols for 16KB

chunks, for 400MB/s drives (left) and 1000MB/s drives
(right), where the benefit of Replicast is far lower than
for 128KB and 1MB chunks. Longer intra-cluster round
trips result in higher probabilities of reservation
conflicts. Another potential weakness is that load
balancing is limited to the scope of the negotiating
group. Although much less likely, negotiating groups
can become unbalanced.

Fig. 10. Throughput: 90 initiators, 16KB chunks

Replicast packets used to set up a flow are larger
than those for a TCP connection. Replicast control
packets take slightly longer to transmit. All benchmarks
in this paper were conducted with 100 byte UCH-CCP
control messages and 300 byte Replicast control
messages. The overhead (that includes, for instance,
cryptographic hash of the chunk) hurts performance
when the chunk size is smaller. The results suggest that
shrinking the Replicast control packets and/or
optimizing the time required to make reservations could
lead to further optimizations. This is one area where the
size of the negotiating group chosen can have an
impact. Larger negotiating groups load-balance better
but require each storage server to process more control
packets for the same amount of actual work.

I. Next Steps

When covering the topics of I/O performance, it is
often difficult to address all pertinent questions at once,
simply due to the combinatorial nature of possible
configuration/workload parameters. The questions
include impact of a) concurrent gets and puts, and their
ratios, b) ratios of initiators to targets, c) size(s) of the
negotiating group, and more. For the next possible steps
or to find answers to at least some of those questions,
please refer to [33] – in particular the blogs titled
“Choosy Initiator” and “The Better Protocol”.

V. CONCLUSIONS

Both conventional consistent hashing and
conventional unicast congestion control lead to poor
allocation of storage cluster resources. Conventional
consistent hashing determines the location of replicas
(or stripes) of content without regard to current
processing loads. Its pseudo-random selections are not
as efficient as dynamically load balanced selection. By
contrast, Replicast dynamically selects storage targets
and achieves the same lack of central metadata
processing as well as balanced resource utilization
across targets. Conventional unicast congestion control

can never achieve high link utilization because it
depends on creating congestion in order to trigger
congestion avoidance. Dynamic negotiation of
bandwidth reservations can achieve more efficient link
utilization.

Results in this paper are supported by NexentaEdge
tests in our lab that we run on a variety of hardware for
6 to 10 storage targets, and the SURGE simulations –
for orders of magnitude larger configurations. These
performance results are consistent with the expectation
that known-size, relatively short flows with pseudo-
random target selection will benefit from a mechanism
and design such as Replicast. Beyond the topic of
storage clusters, we advocate the potential benefits of
tailoring strategies to specific application requirements.

REFERENCES

[1] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph
(Seffi) Naor, Baruch Schieber, “A Unified Approach to
Approximating Resource Allocation and Scheduling,"
http://www.cs.technion.ac.il/~reuven/PDF/BarBar.pdf

[2] Alex Aizman, Caitlin Bestler, “Beyond Consistent Hashing and
TCP: Vastly Scalable Load Balanced Storage Clustering,"
http://www.snia.org/sites/default/files/SDC15_presentations/di
st_sys/AlexAizman_Beyond_Consistent_Hashing_and_TCP.p
df

[3] “NexentaEdge," https://nexenta.com/products/nexentaedge

[4] M.A. Gibney, N.R. Jennings, “Dynamic Resource Allocation
by Market-Based Routing in Telecommunications Networks,"
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.1
485&rep=rep1&type=pdf

[5] RFC 5661, “Network File System (NFS) Version 4 Minor
Version 1 Protocol," https://tools.ietf.org/html/rfc5661

[6] RFC 5664, “Object-Based Parallel NFS (pNFS) Operations,"
https://tools.ietf.org/html/rfc5664

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,
“The Google File System,"
http://static.googleusercontent.com/media/research.google.com
/en//archive/gfs-sosp2003.pdf

[8] “HDFS Architecture Guide,"
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall and Werner
Vogels, “Dynamo: Amazons Highly Available Key-value
Store," http://www.allthingsdistributed.com/files/amazon-
dynamo-sosp2007.pdf

[10] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E.
Long, Carlos Maltzahn, “Ceph: A Scalable, High-Performance
Distributed File System,"
http://www.ssrc.ucsc.edu/Papers/weil-osdi06.pdf

[11] OpenStack, “Swift Documentation,"
http://docs.openstack.org/developer/swift/

[12] http://stattrek.com/online-calculator/binomial.aspx

[13] IETF, Internet Congestion Control research group,
https://datatracker.ietf.org/rg/iccrg/charter/

[14] draft-ietf-tcpm-dctcp-01, “Datacenter TCP (DCTCP): TCP
Congestion Control for Datacenters,"
https://tools.ietf.org/html/draft-ietf-tcpm-dctcp-01

[15] Glenn Judd, “Attaining the Promise and Avoiding the Pitfalls
of TCP in the Datacenter,"
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-
paper-judd.pdf

[16] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily
Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat,
Yaogong Wang, David Wetherall, David Zats, “TIMELY:
RTT-based Congestion Control for the Datacenter,"
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p53
7.pdf

[17] Roberto Rojas-Cessa, Yagiz Kaymak, Ziqian Dong, “Schemes
for Fast Transmission of Flows in Data Center Networks,"
https://web.njit.edu/~rojasces/publications/royazisurvtu15.pdf

[18] N. Dukkipati and N. McKeown, “Why flow-completion time is
the right metric for congestion control,”
https://www.eecs.berkeley.edu/~sylvia/cs268-2014/papers/rcp-
ccr.pdf

[19] C. Ding and R. Rojas-Cessa, “DAQ: Deadline-Aware Queue
scheme for scheduling service flows in data centers,”
https://web.njit.edu/~rojasces/publications/coroicc14.pdf

[20] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo,
Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar
Raindel, Mohamad Haj Yahia, Ming Zhang, “Congestion
Control for Large-Scale RDMA Deployments,"
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p52
3.pdf

[21] RoCE, http://www.roceinitiative.org/

[22] Monia Ghobadi, Soheil Hassas Yeganeh, Yashar Ganjali,
“Rethinking End-to-End Congestion Control in Software-
Defined Networks,"
http://conferences.sigcomm.org/hotnets/2012/papers/hotnets12-
final85.pdf

[23] David X. Wei, Pei Cao, Steven H. Low, “TCP Pacing
Revisited," http://people.cs.pitt.edu/~ihsan/pacing_cal.pdf

[24] Lloyd Dickman, “Pathscale InfiniPath: a first look,"
https://www.researchgate.net/publication/4195836_Pathscale_I
nfiniPath_a_first_look

[25] Matthew J. Koop, Sayantan Sur, Dhabaleswar K. Panda,
“Zero-Copy Protocol for MPI using InfiniBand Unreliable
Datagram,"
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.
483&rep=rep1&type=pdf

[26] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne,
and Lixia Zhang, “A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing,"
http://www.icir.org/floyd/papers/srm_ton.pdf

[27] Caitlin Bestler, “Versioned De-duplicated Object Storage,"
http://www.advancedhpc.com/data_storage/unified_storage/zet
astor/datasheets/OpenstackSwiftCCOW.pdf

[28] IETF BIER, https://datatracker.ietf.org/wg/bier/charter/

[29] Go Programming Language, https://golang.org/doc/

[30] SURGE – a discrete event simulation framework,
https://github.com/hqr/surge

[31] Micron Accelerated NexentaEdge Solution,
https://www.micron.com/resource-details/322b8f66-83fe-4aee-
9bab-93d3ba267e9a

[32] Data Center Bridging Task Group,
http://www.ieee802.org/1/pages/dcbridges.html

[33] Blog storagetarget.com, http://storagetarget.com

[34] DCB Whitepaper, http://www.ethernetalliance.org/wp-
content/uploads/2011/10/document_files_DCB_Whitepaper_v
2.pdf

VI. APPENDIX A. RESULTS FOR 30 INITIATORS

Figure 11 below shows the sorted chunk put
latencies for the smaller (16KB) chunks in the 90x90
configuration (90 initiators, 90 targets). Overall, even
for smaller chunks, we see that Replicast-M has
consistently lower latency than UCH-CCP.

Fig. 11. Sorted Put Latency – 16 KB Chunks

One of the numerous questions we were “asking”
the SURGE models was: how will Replicast perform
for different ratios of initiators/targets. This section
briefly lists two benchmarks for the 1/3 ratio: 30
initiators/gateways generating traffic to 90 storage
targets. Figure 12 and Figure 13 illustrate comparative
throughput for 128KB and 1MB chunks, respectively,
for both 400 MB/s (left) and 1000 MB/s (right) drives:

Fig. 12. Throughput: 128KB Chunks, 30 initiators

Fig. 13. Throughput: 1MB Chunks, 30 Initiators

Replicast-M scales almost linearly with drive
throughput – for medium and large chunk sizes. In this
case, 30 initiators are able to keep 90 targets busy
enough, achieving higher utilization and hence better
throughput. This capability to scale is supported by all
our benchmarks, both simulated using SURGE
framework and conducted on hardware.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

