
 

Scalable Object Storage with Resource 
Reservations  

and Dynamic Load Balancing 
 

Alex Aizman and Caitlin Bestler, Nexenta Systems, Inc. Santa Clara, CA 95050 

Abstract—Scale-out distributed storage clusters require 
efficient selection of the storage targets holding replicas. 
This requires coordinated allocation of target IOPS, 
target persistent storage capacity and network 
bandwidth. The current generation of distributed storage 
solutions mostly select storage targets using consistent 
hashing. Implementations have become significantly 
more sophisticated than the algorithm originally 
presented for Amazon Dynamo. They (consistently) yield 
consistent locations for a given combination of content 
and clustered topology. But none of them consider 
dynamic factors, such as current work load or remaining 
capacity. Moreover, non-dynamic target selection leads to 
uneven distribution of network traffic. Uneven resource 
distribution underutilizes available capacity. We present 
an alternative solution, the Replicast protocol, which 
combines dynamic load balanced scheduling, multicast 
messaging and reservation-based payload delivery. 
Replicast has been implemented and is being deployed in 
a commercial solution called NexentaEdge. To evaluate 
Replicast for large and super-large clusters, we use a 
discrete event simulation framework called SURGE. In 
this paper, we compare the results of simulated object put 
benchmarks with models for conventional storage 
clusters that use consistent hashing and reliable unicast 
connections to transfer content. 

I. INTRODUCTION 

Most current generation storage clusters use a 
variant of consistent hashing to distribute content. 
These algorithms deliver much better scale-out and, as 
the name implies, are based on a hash of the object or 
file name and/or object or file content. These solutions 
include Ceph, OpenStack Swift, GlusterFS and many 
others. These solutions all assume that scale-out storage 
requires a method for target selection which does not 
utilize location tracking metadata. As a storage cluster 
grows, maintaining explicit location tracking metadata 
becomes increasingly difficult. In a large cluster, 
adding or dropping storage targets becomes routine. A 
hash of the name or content determines where the data 
must be stored and hence where it can be located. 

This paper describes a better method for selecting 
targets. The problem we want to address is efficient 
resource allocation in large distributed storage clusters. 
From the general resource allocation perspective, 
combined clustered resources should be shared, 
common and fungible. Users do not care which disks 
store which replicas of their data. But consistent 

hashing selects a fixed set of targets independently of 
their current utilizations. Scheduling become restricted 
and therefore sub-optimal. We argue that resource 
allocation decisions should be bounded only by the 
available resources. In a distributed storage cluster, 
allocations of network bandwidth, target IOPS and 
target storage capacity are all interdependent: network 
bandwidth gets allocated along a certain path, that path 
then must lead to the servers that have available IOPS 
and disk capacity to execute the corresponding storage 
transaction.  We can look at distributed storage cluster 
as a special and specialized case of resource allocation 
and scheduling – see [1] for instance, where the 
problem of allocating network bandwidth is considered 
alongside tasks of machine scheduling and page 
caching.  

We also believe that, in the context of resource 
management, allocating/scheduling network bandwidth 
separately from target IOPS is counter-productive. 
Historically networking and storage are largely done 
separately but subdividing the problem while honoring 
common layering principles may not optimize the 
ultimate answer – allocating just network bandwidth or, 
separately, just storage IOPS, may not provide the 
optimal resources to complete the entire task. 

In this paper, we describe one networking protocol 
designed for storage clusters. We benchmark, compare 
and analyze its performance. Beyond the specifics of 
this protocol, however, we wish to highlight the 
benefits of dynamic load balanced I/O scheduling, 
multicast messaging (in the control plane), and 
reservation-based payload delivery – for storage 
clusters. 

This paper leaves out of scope the upper layers of 
the storage stacks that include storage access layers 
(block, file and object). The mechanisms we describe 
apply to coarse grained object storage primitives: 
getting and putting chunks. A chunk is the finest 
grained unit that the system retrieves from or stores in 
its distributed persistent storage. A chunk, or a “block”, 
contains user payload and/or user or system metadata. 
Replicast distributes chunks optimally and safely, using 
a combination of consistent hashing and dynamic load 
balancing. 
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A. Problem Definition 

Fully distributed storage clusters have many 
initiators and many storage targets. There are too many 
of each for the cluster to be controlled from a single 
active node. 

 
Fig. 1. Distributed Storage Cluster 

The initiators may be collocated on the machines 
that also host the end clients, or an initiator may act as 
an application layer gateway providing a storage 
service access point (for block, file or object APIs) and 
bridging between an external network and the internal 
storage network. Each storage target also acts as an 
initiator when replacing lost replicas. 

In a large fully distributed storage cluster processing 
large numbers of storage transactions every second in 
its Internal Storage Network (Figure 1), the following is 
generally true: 

• Multiple Replicas: A put transaction must 
produce multiple chunk replicas on different 
storage targets (typically, 3). 

• No Location Tracking Metadata: Initiators 
must be able to retrieve a chunk at a later time 
without requiring location tracking metadata. 

• Chunk Maintenance: Lost replicas (of any 
chunk) or whole servers must be replaced by 
copying surviving replica(s), preferably 
automatically. 

• Earliest Transaction Completion: We want 
the earliest transaction completion (sufficient 
number of target servers acknowledging the 
chunk after its payload has been verified and 
persistently stored). 

• Chunk transfers are relatively short in 
duration. Mid-transfer rate adjustments do not 
speed up the I/O sufficiently to justify added  
complexity and overhead. 

• Traffic is sparse. At any given instant only a 
small fraction of potential node-to-node flows 
are active. 

• Traffic is effectively random. The current set 
of active flows will be uncorrelated with the set 
of active flows one second later. 

It is our belief that for storage clusters where all of 
the above applies, new Initiator  Target storage 
protocols are required and are warranted. 

B. Replicast 

Replicast [2] is commercially available as part of 
the NexentaEdge object cluster [3, 31]. The name is 
derived from “Replication multicast/unicast”, although 
the term simultaneously happens to be a full anagram of 
the word “particles.” Replicast’s “particles” are, 
effectively, chunks of data and metadata. 

Replicast is a layer “4.5” protocol: it is above the 
traditional transport layer 4 (TCP, UDP) but is still 
functioning below the traditional application layers (5 
through 7). Other protocols including iSCSI and 
iWARP (RDMA over IP) have filled this 4.5 layer that 
was not anticipated in the original OSI model. 

Replicast multicast negotiations allocate network 
bandwidth, target IOPS and target persistent storage 
capacity. Replicast does not require any node of the 
cluster to have complete knowledge of the resource 
allocations. Initiators only know about the transactions 
they are initiating. Each storage target only knows 
about its own resources and commitments. There is no 
need for all data to be collected at one central planning 
node: just as with a market system, the interactions of 
players with limited knowledge can still converge on 
the correct answer even at vast scale. Research has 
shown that market-style algorithms can optimally 
allocate resources even in the absence of an actual 
marketplace [4]. 

The rest of this paper is organized as follows. 
Section II introduces Replicast in the context of 
scalable distribution of content using load balanced 
target selection. Section III surveys flow scheduling 
techniques in a data center. As opposed to conventional 
TCP or similar connection oriented transports, 
Replicast uses bandwidth reservation to allocate 
network resources. Section IV will measure, analyze 
and evaluate Replicast performance and scalability 
relative to unicast protocols. 

II. LOAD-BALANCED TARGET SELECTION 

The history of how storage clusters have met 
increasing demands to scale can be understood in terms 
of their networking. In the previous decade, pNFS [5, 
6] decoupled metadata from the payloads: pNFS 
metadata servers fully control target selection, but only 
require metadata bandwidth. Payload transfers are 
offloaded to other links and servers. Object-based 
pNFS [6] and the early object storage systems (Google 
File System [7] and Hadoop Distributed File System 
[8]) limited the location tracking metadata to the 
servers, offloading tracking of the exact location of 
each chunk to each storage server. 

Storage clusters with explicit location tracking 
metadata can make near-perfect I/O load balancing 
decisions in real time. The issue we address is how to 
maintain load balancing when the storage cluster scales 
to such an extent that maintaining and accessing 



 

location-tracking metadata is no longer feasible. We 
also consider whether it makes sense to sacrifice load 
balancing in order to support linear scale-out via 
uniform distribution. This paper presents a certain 
perspective and definitive answers to these persistent 
questions.  

A. Consistent Hashing is Too Consistent 

Consistent hashing was invented in the late 1990s 
and popularized for storage clustering by Amazon’s 
Dynamo [9]. It combines a uniform hash, preferably a 
cryptographic hash, of the content with hashing storage 
targets to a “hash ring”. Chunks are assigned to the next 
n-replicas targets in different failure domains moving 
clockwise through the ring. A key benefit of consistent 
hashing is that an add or drop of a target from an n node 
cluster only reassigns the location of 1/nth of the chunk 
replicas. 

Consistent hashing (CH) algorithms and derivatives are 
used by the majority of recently produced distributed-
storage solutions including Ceph [10] and OpenStack 
Swift [11]. Initiator driven allocation (whereby a 
storage initiator (Figure 1) uses CH to select storage 
targets) eliminates the need to maintain, track and 
centrally manage chunk/block location metadata. The 
requirement to generate the same location(s) on a later 
get (read) means in turn that those selected locations 
(targets) cannot be influenced by the dynamic factors 
such as runtime utilizations of storage targets. This is 
true of even a very sophisticated consistent hash 
algorithm such as Ceph’s CRUSH, which factors in a 
static cluster’s topology (CRUSH map). 

Any valid consistent hash algorithm must produce 
results that are statistically random, because any 
detectable pattern could be exploited for a denial-of-
service attack (that could then deliberately misbalance 
the load). Random or pseudo-random selection, 
however, should be distinguished from load-balanced 
distribution. The single most likely result of flipping a 
coin 1000 times is indeed 500 heads. However, the 
probability of getting exactly 500 heads is only 
2.522501818% [12]. Replicast also hash-assigns each 
chunk. However, (and this is its crucial difference from 
all existing consistent hash implementations) Replicast 
hashes to a sub-group, the “negotiating group.” It 
subsequently load-balances within each independent 
sub-group. Replicast does not track which storage 
targets in the negotiating group have chunk replicas. 
Therefore, background maintenance does not require 
metadata updates (a big plus). Chunks are located 
within the negotiating group using multicast messaging. 

 Dividing the storage cluster into multiple multicast 
groups limits the control plane traffic that any one node 
receives but still provides load-balancing. (By contrast, 
broadcasting requests to all nodes would produce far 
too much control plane traffic.) The optimal size of a 
Replicast negotiating group varies – for deployment 

and testing we so far favored three times the default 
replication count (9). Picking the best 3 out of 9 storage 
targets will produce a better selection than selecting the 
best 3 of 6. Doubling the size of the negotiating group 
will also double the number of control plane requests 
that each node in the group receives, but it will not 
double the quality of the target selection.  Of course, all 
control plane bandwidth reduces the bandwidth 
available for data. 

B. Replicast Put Transaction 

Replicast prevents congestion drops by governing 
the source of every frame feeding the network queues 
used for its traffic class. Replicast transactions take 
place on an isolated network that only carries Replicast 
traffic: the network may be physically separate or a 
VLAN with its own L2 traffic class.   

For a put transaction, an initiator multicasts a put 
request specifying the cryptographic hash and size of a 
to-be-put chunk to the negotiating group. In response, 
each storage target in the group unicasts a “bid” 
response indicating, among other things, the window of 
time the chunk can be accepted (note that the 
description in this section omits details related, for 
instance, to distributed deduplication, capacity 
management and error handling).  

Each bid is extended by a configurable amount 
(percentage of the minimal reservation required to 
process a given chunk size) to allow the initiator to find 
a common sub-window from multiple bids. Each bid 
also implies that the corresponding target has 
(tentatively) committed its resources to receive the 
chunk within the given time window. The initiator 
evaluates the collected set of response bids and then 
makes a selection of the set of targets to receive the 
chunk. This subgroup of selected targets is termed the 
“rendezvous group”. A pre-selected rendezvous group 
may be dynamically configured for the selected 
membership. However, to avoid any need for custom 
switch firmware it may be easier (or more practical) to 
select a pre-configured multicast group that has the 
desired membership. Independently of how the 
rendezvous group was selected, its address and its 
membership are included in the put accept message 
multicast to the negotiating group. 

The initiator then executes the rendezvous transfer 
at the agreed time. In response, each member of the 
rendezvous group acknowledges the complete chunk 
transfer. There are corner cases, of course, when this 
sequence will not result in creating sufficient replicas of 
the chunk – the Replicast initiator then will simply retry 
the transaction. Figure 2 shows one specific Replicast 
interaction with initiators A, B, and C attempting to put 
a chunk to negotiating group Y. From the perspective 
of one member of this group denoted as server X, the 
corresponding put requests arrive in close succession. 
First, initiator A executes a put-request for the chunk 



 

0x8fe1b and receives a bid indicating that the server X 
is available right away.  

Second, initiator B that has lost this particular 
“race” to A for its own chunk 0xa428c also transmits a 
put control message and receives a bid from the same 
server X. The difference though is that the second bid is 
shifted 120us into the future – the time that is defined 
(in this example) by the width of the previous 
reservation for the chunk 0x8fe1b. 

 
Fig. 2. Replicast Put Transaction (example) 

In the center of Figure 2, several things happen. 
Initiator A accepts server X’s bid. Initiator B’s accept 
message (multicast to group Y) does not include server 
X, which translates as a cancel for the corresponding 
server X’s bid. Server X in response will trim its 
reservation for A to the specified duration, and cancel 
its reservation for B. Initiator C then sends yet another 
put-request. At this point, the server X will have 
released its tentative resources reservation for B and 
granted a new tentative reservation for C, quite likely 
for the same time window previously reserved for B. 
Due to the multicast nature of this control plane, same 
or similar interactions play out in parallel with each 
member of the negotiating group Y. 

Notice a certain inevitable tradeoff of the 
reservation based protocol, denoted with the curly 
bracket on Figure 2. Let’s assume a put request from C 
for its chunk 0x3b72e arrives prior to B’s cancelation. 
In this case the server X’s bid that C receives will have 
to account for both A’s and B’s reservations. And even 
though initiator B will (in this example) cancel its bid, 
initiator C will have to execute based on the 
information that server X can only offer a time window 
delayed into the future by, effectively, two put requests. 
Server X could, of course, eliminate this scenario by 
waiting for the put-accept message from B prior to 
responding to C. The model that we describe in this 
paper, and the NexentaEdge product [3], both favor 
zero latency as far as control plane responses. 

C. Retrieving Chunks 

Replicast uses multicast messaging to eliminate the 
need to store location tracking metadata. A chunk is 
retrieved from a negotiating group as follows: 

• The initiator multicasts a get request to the 
negotiating group for the desired chunk. 

• Each storage server in the group that holds a 
replica of the chunk responds with a bid on 
when it (the server) could deliver the chunk. 
Those that do not have the chunk so indicate. 

• The initiator then multicasts an accept message 
to the negotiating group specifying which server 
should respond. The initiator does not need to 
wait for all responses when fetching a payload 
chunk. 

• The selected server sends the chunk to the 
initiator. 

This paper leaves out of scope optimization 
mechanisms that would have storage targets (lazily) 
sharing their selected server sets to enable more narrow 
multicasting to the probable locations. For payload 
chunks false positives could easily be retried (this type 
of failure should be rare as it implies that all redundant 
copies have been replaced prior to updating or 
invalidating the cashes). For operations on metadata, 
the idea is to narrow down last-version related 
information.  For simplicity, both the model and initial 
implementation use multicasting to the negotiating 
group to resolve both metadata and payload chunks. 

III. NETWORK UTILIZATION 

Most distributed storage clusters deployed today 
“sub-contract” allocation of one of the most critical 
resources - network bandwidth - to TCP. TCP is, of 
course, designed for general purpose traffic. Chunk 
transfers (chunk-flows) within a large fully distributed 
storage cluster have a number of characteristics that call 
for certain specific congestion controls. Flow 
scheduling must be tailored as well to relatively short 
flows between pseudo-randomly selected endpoints. 
The fact that each and every stored or to-be-stored 
chunk has a known size can be used to deterministically 
optimize storage driven network communications. 

In this section, we first survey works related to flow 
scheduling and bandwidth reservation. Most propose 
flow scheduling better suited to storage than generic 
TCP. We will then discuss our preferred solution, 
Replicast congestion control and scheduling.  

A.  Survey of Flow Scheduling Techniques 

TCP/IP is the most widely deployed method of 
allocating network bandwidth. Numerous studies have 
shown the shortcomings of the classic TCP algorithm 
for dealing with storage traffic. However, TCP 
congestion control is not a static algorithm; it is 
constantly improving [13]. This includes using more 



 

sources of information for the network congestions 
state and improving the rate adjustments made when 
congestion is detected. 

Datacenter TCP (DCTCP) [14] provides an 
improved algorithm to determine congestion by 
tracking ECN marking. Glenn Judd’s analysis of 
DCTCP [15] cited issues with DCTCP sharing a 
network with TCP, but those concerns would not be 
relevant for storage clusters. It merely requires the use 
of a distinct storage traffic class. 

Timely [16] is a similar congestion control 
algorithm which measures network congestion by using 
precise timing to detect changes in packet round trip 
times, rather than relying on switch ECN marking. 
Survey of data center flow scheduling schemes [17] 
discusses several non-TCP solutions. Many of these, 
such as Rate Control Protocol (RCP) [18], require 
special support from network routers and/or switches. 
Such modifications are infeasible for commercial 
deployment. Other schemes, such as Deadline Aware 
Queue (DAQ) [19], have merit for general purpose data 
center traffic that include very long flows. However, 
they adjust rates during overlapping flows. With 
storage clusters, each chunk transfer is short lived. A 
simple scheduling algorithm that schedules the entire 
chunk transfer is all that is in fact required. 

DCQCN [20] is proposed for RoCE [21] networks 
that incorporates the DCTCP algorithm with the QCN 
(Quantized Congestion Notification) protocol 
developed for IEEE 802.1 DCB (Datacenter Bridging) 
[32]. RoCE is RDMA over Converged Ethernet, 
effectively a port of InfiniBand over Ethernet. DCQCN 
adds the benefits of in-path congestion notifications 
with round trip congestion notification. OpenTCP [22] 
proposed tracking congestion on a datacenter-wide 
basis for Software Defined Networks and then using 
this information to tune TCP on each sender with a 
custom kernel module. OpenTCP relied upon a central 
“oracle” to collect/process network status – a potential 
impediment to scalability. Given relatively uniform 
distribution of traffic in clusters local measurement of 
congestion across all flows could provide a reasonably 
accurate estimate of overall network congestion. 

None of these techniques change the fundamental 
contention-based sequence: pick an initial speed, 
transmit, measure congestion, adjust speed and repeat. 
Ongoing developments in the space improve 
measurement of congestion, adjust the initial windows 
or improve the additive increase and/or multiplicative 
decrease to be more intelligent. These are 
improvements over early implementations but they still 
must generate congestion to adjust rates. The alternative 
to “congest-then-adjust” strategy is to reserve network 
bandwidth before it is used. A survey of flow 
scheduling schemes in data centers [17] defined several 
classifications for the scheduling algorithms. According 
to the classification [17] of flow scheduling schemes, 

Replicast is a non-TCP based deadline-aware protocol 
without requirements for special hardware or software 
on the switch (Figure 3).  

Replicast is deadline-aware because every chunk-
flow has a known size (size of the chunk) and will 
finish by a certain negotiated time. Replicast can also 
be appropriately labeled “edge based” since the 
clustered storage targets negotiate non-overlapping time 
slots for each chunk-flow, which also means that the 
flows do not interleave on the edge links. It is “one-
shot”: chunk transfers do not require rate adjustments 
mid-transfer. 

  
Fig. 3. Part of flow scheduling classification [17] 

The only required switch support is limited to no-
drop Ethernet [34], which is common for enterprise 
class switches. The following table compares where 
and how congestion control is performed: 

TABLE 1. WHERE/WHEN CONGESTION CONTROL IS DONE 

Protocol How Often Where 

Rate Control 
Protocol 

Per Frame Switch 

DCTCP Per Frame Target OS stack 

Replicast Per Chunk Replicast userland  

at storage target 

B. Reservation Based Delivery 

Reservation based protocols execute extremely 
efficiently during the reserved time windows. There are 
inevitable idle intervals, though, in-between. The time 
required to set up a reservation is determined by the 
round trip time – efficiency of reservation based control 
depends therefore on having chunks larger (on average) 
than a certain threshold. 

If the gaps between reserved transmissions are 
small, the efficiency of reservations will be higher than 
contention algorithms can achieve. Stream oriented 
reservation protocols configure each switch on the path 
to support the flow. This does not work for chunk 
transfers. For example, supporting per chunk 
reservations for 128 KB chunks would require tracking 
tens of thousands of reservations per second for each 
storage target on each switch along the path. 

Replicast does not dynamically configure switches 
for each chunk transfer. The switches are configured to 
support all possible flows. Senders are only permitted 



 

to transmit when they have a reservation granted by 
each recipient. This is enforced by shutting off network 
access for non-compliant nodes. Dynamic switch 
enforcement is not required. Relying on nodes obeying 
the reserve-first rule eliminates the cost of dynamically 
reconfiguring switches but still requires the reservation 
granter to understand all potentially competing flows. 
Replicast targets continuously track their own flows 
and grant subsequent reservations based on this 
tracking information: no cluster-wide knowledge is 
ever needed. 

C. Captive Congestion Points 

Replicast exploits specific network topology 
including a non-blocking core. Figure 4 illustrates three 
potential congestion points for a data center storage 
cluster: 

• Initiator: The initiator can apply rate shaping to 
limit transmitted traffic to the desired rates. This 
would also avoid periodic bursting of packets, 
providing the same benefit addressed with 
Paced TCP [23]. 

• Non-Blocking Core: The core network can be 
provisioned as a non-blocking core. 

Which leaves: 

• Storage Target: In a distributed storage cluster, 
each target can at any point in time be selected 
by a random number of other clustered nodes. 
The egress port to the storage target is, 
therefore, the sole source of congestion (Figure 
4). 

 
Fig. 4. The three potential congestion points 

Storage protocols, therefore, must be explicitly 
designed to manage (or totally prevent) egress 
congestion. In this paper we advocate one way: using 
reservations. Replicast targets issue reservations for 
their own CPU/disk resources and link bandwidth: one 
reservation per chunk flow.  

D. Replicast Bandwidth Allocation 

The Replicast protocol divides link capacity through 
each captive congestion point between contention 
allocated and reserved bandwidth, and the contention 
(aka unsolicited) bandwidth is used to create 
reservations. The link capacity for the storage traffic 
class is divided between reserved (data) bandwidth and 
contention (control) bandwidth. Replicast transfers 

payload chunks using the reserved bandwidth at the 
negotiated rate.  The sender does not pause waiting for 
disk I/O to complete, nor does the recipient slow the 
flow because it is running out of buffer space. Chunks 
are transmitted from RAM to RAM. The reserved 
bandwidth is therefore 100% utilized once the transfer 
is initiated.  

The sustained unsolicited rate must be lower than 
the allocated unsolicited rate to allow for random 
variation. The goal is to be confident that a surge in 
unsolicited traffic will not result in a congestion drop. 
No-drop Ethernet [34] marshals switch resources to 
manage brief durations exceeding the sustained rate, 
and eliminates any need to reserve specific time slots – 
the service will resolve issues as long as the aggregate 
of reserved and unsolicited frames does not exceed 
available network buffering. 

The (configurable) unsolicited rate must take into 
account the number of unsolicited packets per each 
chunk transfer, the size of the negotiating group relative 
to the rendezvous group, average chunk size(s) and 
read/write ratios. It is easy to come up with the worst 
case estimation; questions of safe enough unsolicited 
minimum as well as its runtime adjustment – those are 
questions beyond the scope of this paper. 

E. Rendezvous Transfers 

Replicast bulk payload transfers are called 
“rendezvous transfers”. They may be performed using 
multicast messaging to multicast groups which 
represent a specific subset of a negotiating group or 
using unicast addressing to a specific target. The  
variant using multicast payload delivery is referred to as 
“Replicast-M” (“M” for multicast). 

Rendezvous transfers are performed after control 
plane exchanges have established a reservation granted 
by each of the receivers. The transfers occur at the 
provisioned rate for reserved payload. Senders can 
“floor it” immediately. The feasibility of using 
unreliable datagrams to provide reliable pre-negotiated 
transfers was demonstrated for MPI libraries using 
InfiniBand Unreliable Datagrams [24, 25]. Replicast 
extends this concept to multiple deliveries. 

F. Replicast-Hybrid 

The Replicast-H variant of the Replicast protocol 
(“H” for hybrid) combines multicast control plane with 
unicast delivery. The hybrid solution is desirable when, 
for instance, multicast rendezvous groups cannot be 
dynamically configured or preprevisioned in sufficient 
numbers. With this variation, a put transaction performs 
the following steps: 

• Similar to Replicast-M (Figure 2 above), 
Replicast-H initiator multicasts a put-request to 
the group, identifying the chunk, its compressed 
size and the earliest time this initiator can start 
transmitting the chunk’s payload. 



 

• Each storage target in the group not already 
holding the chunk responds with a bid 
committing its resources and its bandwidth for 
the specific window of time in the future. 

• The initiator collects the bids and tries to select 
multiple consecutive time windows for the 
subsequent unicast transmission(s).   

• The initiator then unicasts the rendezvous 
transfers at the specified time(s). 

• The selected targets each reply with a Chunk 
ACK after it successfully saves the chunk to 
persistent memory, or earlier in the event of any 
error.  

• The Initiator keeps repeating until the total 
number of required replicas have been put.  

Both Replicast-M and Replicast-H strategies rely on 
reserved bandwidth and use a single acknowledgement 
for an entire chunk transmission. A cryptographic hash 
on every chunk verifies error free reception (and later – 
retrieval) and also detects lost packets, however rare. 
While the cost of full chunk retransmission is high, the 
judgment call that we had made previously (based on a 
realization that, for instance, traffic shaping in modern 
data centers effectively prevents network congestion 
drops) proved to be feasible and working. 

G. Reliable Multicasting 

Replicast uses unreliable datagrams. The general 
problem of reliable multicasting has been well studied 
[26]. However, reliable multicasting in a large 
distributed storage cluster (the use case that we describe 
here) – is a far more specific problem: 

• Multicast delivery is to a handful of targets. 
There is no “ACK implosion” problem from too 
many targets acknowledging the transaction. 

• The solution is constrained to networks with 
extremely low physical error rates with 
reservations to prevent congestion drops. 

• Each chunk transfer is short, with a length 
known before the transfer begins. No targets 
attempt to join an in-progress delivery. 

• Each chunk transfer can be verified by a 
cryptographic hash of the chunk content. 

Therefore, a simple acknowledgement of each 
chunk transfer, with upper layer driven retries, is all 
that is required to achieve reliable chunk transfers. 

H. Multicast Delivery is Efficient 

Multicast delivery is efficient: the initiator only 
sends once to reach multiple targets. The authors’ initial 
object storage design [27] sought to reduce the network 
overhead of replication from three copies to two by 
hybridizing network replication with local replication. 
The prospect of zero extra transmissions motivated our 
initial exploration of multicasting. 

There's always a cost and associated tradeoffs in 
almost any new design. Multicast delivery, for instance, 
depends on the capability to find those 3 servers that 
provided bids, intersection of which yields the ultimate 
window of time sufficiently wide to execute the chunk. 
This in turn motivates provisioning of extra-width into 
each and every reservation, to increase the 
corresponding chances. But each additional 
microsecond in the reserved windows increases the 
chances to delay subsequent reservations. As we 
progressed with the design we found that, even 
excluding multicast data transfers, using multicast load-
balancing and reservations still produces great benefit.  

IV. DISCRETE EVENT SIMULATION 

Our lab storage clusters have been running for some 
time, but they unfortunately do not scale anywhere near 
as large as Replicast is designed for. 

To address this limitation, we developed SURGE – 
a discrete event simulation framework written in Go 
[29]. Complete and documented source code that 
includes the framework and concrete models (including 
basic Replicast) can be found at 
https://github.com/hqr/surge. The results cited here 
were generated with the build d92018f using bench.sh 
script, also checked in. 

Behind the gateways/initiators, there are storage 
servers. Together, gateways and servers are referred to 
as nodes and form a distributed cluster. Each simulated 
node fully owns its configured resources: disk and 
network interface, and runs in a separate “goroutine”. 
The latter is a first-order primitive of the Go language 
that multiplexes potentially hundreds of thousands of 
goroutines onto OS threads. SURGE therefore is a fully 
preemptive modeling framework that employs all 
processor cores of the host to drive its models forward. 
Each modeled node connects with all other nodes via a 
pair of Go channels. SURGE’s event types include data 
events that carry chunk payload and unsolicited control 
messages.  

Each simulated control and data event is precisely 
timed, with the system time “ticking” in nanoseconds. 
At each next tick the framework itself makes sure that 
the modeled NOW does not advance until all the events 
scheduled at NOW do in fact execute. The simulated 
datapath uses 9000 byte jumbo frames. The configured 
bandwidth is reduced by 1% for overhead. Each data 
frame is a timed SURGE event. Initiators are most 
often Application Layer Gateways (ALG) accessed 
over a client network by the end user using standard 
protocols. The impact of the client network and its 
protocol selection is not modeled. 

We only model put performance. The mix of get 
versus put transactions, and their subtle performance 
interactions (particularly related to caching) would 
require more complex modeling and would force the 



 

simulation to make many assumptions that users might 
feel are unrepresentative.  

A. The Common Model 

The following model is henceforth assumed: 

• All objects are decomposed into metadata and 
payload chunks. 

• Metadata chunks (typically one per object 
version) are indexed by the object name and 
version. 

• Payload chunks, which are ultimately indexed 
by a cryptographic hash of their content. 

• There is a non-blocking no-drop network core 
that connect a large number of edge ports. This 
simulation models those ports as 10 GbE ports. 

• All storage payload transfers occur on a 
protected no-drop VLAN. 

• Transmission errors are sufficiently rare that 
they do not need to be modeled. 

The simulation (with results presented in Section 
“Results” below) only models put transactions. In 
actual deployments, concurrent read and writes impact 
each other. We did not simulate the reads (yet) at least 
in part because (at the time of this writing) there is no 
reason to believe that there would be an appreciable 
benefit of Replicast reads over conventional reads.  

As of the time of this writing, SURGE simulations 
model each initiator working on a single chunk at a 
time while NexentaEdge implementation begins 
negotiations for the next chunk while finishing the 
current chunk. The simulation can of course achieve an 
extremely high level of parallelism by simply adding 
more initiators. This would also be effective for a real 
world storage cluster as well but would not be cost free. 

B. UCH-CCP 

A fair comparison requires simulating unicast 
congestion control that was equal to the best TCP 
congestion control algorithms. Rather than investing in 
simulating a moving target, we modeled an idealized 
unicast congestion algorithm that is better than any 
actually deployed. Specifically, this hypothetical 
algorithm dubbed “UCH-CCP” (Unicast Consistent 
Hash using Captive Congestion Point) features: 

• Consistent hashing for target selection. 

• Unicast UDP that is used for both “connection” 
setup and for chunk transfers. 

• Dynamic reservations for payload transfers, 
granted by the targets at connection setup times. 

UCH-CCP relies on the reserved traffic class to 
isolate it from non-storage traffic. This is a unicast 
dynamic bandwidth reservation protocol. It allows the 
sender to “floor it” after a single round trip. To avoid 
any biasing, we have even compared against UDP, with 

its lower overhead per packet, rather than TCP. Figure 
5 illustrates the UCH-CCP pipeline stages: 

 
Fig. 5. UCH-CCP Pipeline 

"Chunk Put Request" initiates the flow. “Rate Init” 
response form the target carries the initial rate 
computed as proportion of the target’s bandwidth given 
the current number of flows (to this target). “Rate Set” 
represents additional optional rate adjustments (by the 
target) during the flow. Once the entire chunk is 
transferred, it is written to persistent storage (signaled 
by “Disk Write Completion”) and then acknowledged 
(“Replica Put ACK”). UCH-CCP (serial) variant could 
assign all egress link bandwidth to one chunk at a time. 
The UCH-CPP model [30] and simulated benchmarks 
that we show in this paper use an interleaving strategy 
to more closely resemble TCP/IP (the transport used 
today by great majority of storage clusters).  

Figure 6 illustrates a UCH-CCP interaction with 
two initiators attempting overlapping chunk puts to the 
same server. Initiator A receives the full rate (9.9 Gbps) 
when it starts. 

 
Fig. 6. UCH-CCP protocol (example) 

When initiator B requests to put a chunk it receives an 
initial rate of 4.45 Gbps while initiator A’s rate is cut to 
the same. Once initiator A’s chunk transfer completes, 
it receives its Replica ACK and initiator B’s rate is 
increased to 9.9 Gbps. 

C. Replicast 

Figure 7 illustrates the put-chunk I/O pipeline of the 
Replicast-H and Replicast-M protocols. These control 
messages exchanged as part of each and every put 
transaction were previously discussed in Section 
“Replicast Put Transaction”. 

 
Fig. 7. Replicast Stages 



 

The Replicast simulations model UDP over IPv6. 
The switch is assumed to have multicast forwarding 
tables large enough to allow all required rendezvous 
groups to be pre-configured. 

D. Replicast-H(ybrid) 

Replicast-H combines multicast negotiations with 
unicast delivery. This provides the benefits of multicast 
negotiations and use of reserved bandwidth for chunk 
transfers, but sacrifices the benefits of multicast 
delivery.  As with UCH-CCP the link is still fully 
utilized during a chunk transfer. 

However, unicast delivery may be the preferred 
solution when the network infrastructure cannot support 
the required number of rendezvous groups. 

E. Replicast-M(ulticast) 

Replicast-M is modeled with static rate control for 
unsolicited traffic. Each Initiator limits generation of 
unsolicited requests to a configured rate. This rate is set 
so that there is high confidence that the actual aggregate 
unsolicited bandwidth will be below the bandwidth set 
aside for unsolicited traffic. Rendezvous groups may be 
dynamically configured. One method is to dynamically 
specify the rendezvous group as the subset of the 
negotiating group. The BIER (Bit Indexed Explicit 
Replication) [28] protocol under development within 
the IETF allows multicasting to a subset of a “BIER 
Domain” to be identified by an explicit bitset. Replicast 
can map each negotiating group to a BIER domain and 
specify the targets of each rendezvous transfer with a 
bitmask. 

Alternately, rendezvous groups may be pre-
configured and dynamically selected. IPV6 MLD is 
used to pre-configure every possible 2 or 3-member 
subset of each negotiating group. The initiator can 
select the pre-configured group because it has an 
exclusive reservation for each of its members. Pre-
configuring rendezvous groups does limit the scale of 
one cluster. If a negotiating group has 9 members, then 
120 rendezvous groups can enumerate every 2 or 3-
member subset (9*8*7/3*2 + 9*8/2 = 120). Supporting 
900 storage targets in a cluster and 9 targets per group 
would then require 120 * (900/9) multicast forwarding 
rules in each switch. Growing beyond 12,000 targets 
would quickly exceed the table capacity for virtually all 
existing switches and thus require either special 
switches or partitioning of the storage cluster into 
multiple federated clusters. 

F. Results 

Typical simulated benchmark took us anywhere 
between 90 minutes and 6 hours on a 24-core system, 
with every transaction timed and logged for later 
analysis. These results correspond to a non-blocking 
10GE core connecting 30 or 90 initiators putting to 90 
targets. Simulated CPU is effectively unlimited. In the 

benchmarks, initiators generate chunks (as fast as they 
can) and store 3 replicas of each chunk on the targets. 

Table 2 summarizes the results for 90 targets and 90 
initiators  for 16K, 128K and 1MB size chunks at disk 
throughputs 400MB/s and 1000MB/s, respectively. 
Chunk sizes are shown in the left column. Each cell of 
the table contains 3 types of averages (means): 
performance (chunks/sec), utilization of target disks 
(%), and chunk put latency (microseconds). 

TABLE 2. 90 INITIATORS, 90 TARGETS, 400MB/S DRIVES 

Chunk uch-ccp replicast-m replicast-h 

 

16K 

 

536,950 c/s 

70.6%  

164.7us 

635,750 c/s 

83.6% 

139.0us 

525,100 c/s 

69.0%  

168.4us 

 

128K 

58,400 c/s 

66.4%  

1401.7us 

80,700 c/s 

90.6%  

1039.8us 

73,400 c/s 

83.6%  

1132.6us 

 

1M 

6,733 c/s 

69.6%  

10260.2us 

8,067 c/s 

85.6%  

9210.8us 

8,000 c/s 

84.9%  

8945.9us  

The corresponding aggregate performance and 
utilization numbers for each modeled protocol are listed 
as well. Even for smaller size chunks, Replicast-M 
achieves better latency and throughput than the other 
two protocols. Figure 8 can help visualize the put-
chunk latencies for both Replicast-M and UCH-CCP. 
Neither protocol creates any notable steady-state 
patterns (such as the TCP sawtooth).  

 
Fig. 8. Put latency – 30 initiators, 90 targets, 16 KB Chunks, 400 
MB/s drives 

The X axis on Figure 8 represents successive chunk 
numbers from 1 to the maximum (number) performed 
during this fixed-time benchmark. Figure 9 summarizes 
the throughput for Replicast-M compared to UCH-CCP 
and Replicast-H, for both 400 MB/s (left) and 1000 
MB/s (right) drives. 

 
Fig. 9. Put throughput comparison for 128K chunks 



 

Replicast-H and Replicast-M show similar 
performance with the slower drives but only Replicast-
M scales almost linearly with the faster drives: 2.18 
increase in the throughout (relative to the 2.5x increase 
in disk speed). Replicast-M scales even better for 1MB 
chunks: 2.4 increase. The unicast protocols, meanwhile, 
show less improvement, indicative of network 
bottlenecks. On the other hand, the larger control plane 
overhead is in part responsible for the Replicast-M 
performance with 16 KB chunks.  

Table 3 compares the impact of faster disk drives on 
transactional latency. Similar to Table 2 above, the 
results include average performance (chunks/sec), disk 
utilization and put latency (microseconds). If the 
network caused zero delays, the expected latency with 
1000 MB/s disks would be 0.4 of the latency with 400 
MB/s disks. Replicast-M scales extremely well for 
medium and large chunks, while  Replicast-H 
outperforms its unicast counterpart for medium and 
large chunks. Both Replicast “flavors” are clearly 
impacted by the control plane overhead for 16 KB 
chunks.  

TABLE 3. 90 INITIATORS, 90 TARGETS, 1000MB/S DRIVES 

Chunk uch-ccp replicast-m replicast-h 

 

16K 

 

918,500 c/s 

48.1% 

96.0us 

907,400 c/s 

47.4% 

97.0us 

632,200 c/s 

32.9% 

139.3us 

 

128K 

 

108,900 c/s 

47.0% 

784.7us 

176,000 c/s 

74.7% 

489.5us 

127,900 c/s 

55.0% 

673.0us 

 

1M 

 

13,475 c/s 

48.4% 

6042.9us 

19,850 c/s 

68.6% 

4242.0us 

16,075 c/s 

57.1% 

5163.8us 

G. Lab Testing 

NexentaEdge object cluster [3, 31] has been 
available for beta users since late 2014. This solution 
implements the Replicast protocol in user mode Linux. 
Table 4 below shows NexentaEdge block throughput 
performance for 16K chunks: 

TABLE 4.  NEXENTAEDGE PERFORMANCE – 16K CHUNKS  

Chunk/s 23351.91 

MB/s 396.12 

Write Latency (us) 2.4505 

• 2 application layer gateways (aka initiators) 
• 10 storage targets, each with 128 GB RAM, 

10x4 TB HDDs, 2x800 GB SSDs, 10 GbE 
Ethernet 

• Mellanox SX1024 switch 

Results that we get in our lab are consistently better, 
often 2 to 7 times better, than the performance of Ceph 

and OpenStack Swift storage clusters on the same 
(apples-to-apples) hardware configurations. 

H. Replicast Strengths and Weaknesses 

The simulation results confirm one of the primary 
design goals of the Replicast protocol: better load-
balancing for both network bandwidth and target IOPS 
results in higher storage backend utilization. As stated 
in the Section “Problem Definition”, Replicast is 
designed for a very specific set of workloads and was 
never intended to perform as a general purpose 
transport. From the general purpose transport 
perspective, Replicast does have weak points: 

• Transfers must be for known-size non-gigantic 
chunks.  

• The storage cluster membership must be 
enumerated and have short cluster trip times. 

Other shortcomings are evident in the simulation 
results. As per discussion in Section “Load-Balanced 
Target Selection”, tentative reservations which are not 
ultimately accepted can delay bids for later put 
requests. This reduces storage backend utilization and 
increases transactional latency. For instance, given 
176,000 chunk/sec average throughput for the 90 
targets assembled in 10 groups (see Table 4, Figure 9), 
the cluster-wide chunk arrival time would range 
between 25us and 75us. Assuming medium 50 
microseconds, the Poisson lambda for a storage server 
would equal about 0.02. Thus, for any storage server 
processing 128K put-chunk workload in this (90 
initiators, 90 targets, 1000MB/s drives) configuration, 
the probability of receiving a new put request during 
the next 7 microseconds (the time required to send the 
bid and receive a response) computes as:    ࢌሺ࢚ሻ = ૚ −  %13 =   ࢚ࣅିࢋࣅ

Table 5 summarizes the probabilities for any given 
target to receive a put  while the prior reservation is still 
tentative (that is, not yet accepted or canceled). Delayed 
reservation from a single server does not necessarily 
mean that the corresponding chunk will have to be sub-
optimally delayed: for this to happen and given the 
group size 9, more than 6 servers of this group must be 
delaying this particular reservation as well. Clearly 
though, higher ratios of back-to-back reservations will 
adversely affect performance: 

TABLE 5. PROBABILITY OF (PUT REQUEST ARRIVING WHILE THE 
PRIOR RESERVATION IS STILL TENTATIVE) 

Chunk Put interarrival 
time 

 Poisson ࣅ
probability  

16K 11us 0.09 46.7% 

128K 50us 0.02 13% 

1MB 500us 0.002 1.39% 

As for smaller chunks, Figure 10 illustrates the 
comparative performance of the protocols for 16KB 



 

chunks, for 400MB/s drives (left) and 1000MB/s drives 
(right), where the benefit of Replicast is far lower than 
for 128KB and 1MB chunks. Longer intra-cluster round 
trips result in higher probabilities of reservation 
conflicts. Another potential weakness is that load 
balancing is limited to the scope of the negotiating 
group. Although much less likely, negotiating groups 
can become unbalanced. 

 
Fig. 10.  Throughput: 90 initiators, 16KB chunks 

Replicast packets used to set up a flow are larger 
than those for a TCP connection. Replicast control 
packets take slightly longer to transmit. All benchmarks 
in this paper were conducted with 100 byte UCH-CCP 
control messages and 300 byte Replicast control 
messages. The overhead (that includes, for instance,  
cryptographic hash of the chunk) hurts performance 
when the chunk size is smaller. The results suggest that 
shrinking the Replicast control packets and/or 
optimizing the time required to make reservations could 
lead to further optimizations. This is one area where the 
size of the negotiating group chosen can have an 
impact. Larger negotiating groups load-balance better 
but require each storage server to process more control 
packets for the same amount of actual work. 

I. Next Steps 

When covering the topics of I/O performance, it is 
often difficult  to address all pertinent questions at once, 
simply due to the combinatorial nature of possible 
configuration/workload parameters. The questions 
include impact of a) concurrent gets and puts, and their 
ratios, b) ratios of initiators to targets, c) size(s) of the 
negotiating group, and more. For the next possible steps 
or to find answers to at least some of those questions, 
please refer to [33] – in particular the blogs titled 
“Choosy Initiator” and “The Better Protocol”. 

V. CONCLUSIONS 

Both conventional consistent hashing and 
conventional unicast congestion control lead to poor 
allocation of storage cluster resources. Conventional 
consistent hashing determines the location of replicas 
(or stripes) of content without regard to current 
processing loads. Its pseudo-random selections are not 
as efficient as dynamically load balanced selection. By 
contrast, Replicast dynamically selects storage targets 
and achieves the same lack of central metadata 
processing as well as balanced resource utilization 
across targets. Conventional unicast congestion control 

can never achieve high link utilization because it 
depends on creating congestion in order to trigger 
congestion avoidance. Dynamic negotiation of 
bandwidth reservations can achieve more efficient link 
utilization. 

Results in this paper are supported by NexentaEdge 
tests in our lab that we run on a variety of hardware for 
6 to 10 storage targets, and the SURGE simulations – 
for orders of magnitude larger configurations. These 
performance results are consistent with the expectation 
that known-size, relatively short flows with pseudo-
random target selection will benefit from a mechanism 
and design such as Replicast. Beyond the topic of 
storage clusters, we advocate the potential benefits of 
tailoring strategies to specific application requirements. 
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VI. APPENDIX A. RESULTS FOR 30 INITIATORS 

Figure 11 below shows the sorted chunk put 
latencies for the smaller (16KB) chunks in the 90x90 
configuration (90 initiators, 90 targets). Overall, even 
for smaller chunks, we see that Replicast-M has 
consistently lower latency than UCH-CCP.  

 
Fig. 11. Sorted Put Latency – 16 KB Chunks 

One of the numerous questions we were “asking” 
the SURGE models was: how will Replicast perform 
for different ratios of initiators/targets. This section 
briefly lists two benchmarks for the 1/3 ratio: 30 
initiators/gateways generating traffic to 90 storage 
targets. Figure 12 and Figure 13 illustrate comparative 
throughput for 128KB and 1MB chunks, respectively, 
for both 400 MB/s (left)  and 1000 MB/s (right) drives:

 
Fig. 12.  Throughput: 128KB Chunks, 30 initiators

 

Fig. 13.  Throughput: 1MB Chunks, 30 Initiators 

Replicast-M scales almost linearly with drive 
throughput – for medium and large chunk sizes. In this 
case, 30 initiators are able to keep 90 targets busy 
enough, achieving higher utilization and hence better 
throughput. This capability to scale is supported by all 
our benchmarks, both simulated using SURGE 
framework and conducted on hardware.   
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