Customizable Computing at Datacenter Scale

Jason Cong
Chancellor’s Professor, UCLA
Director, Center for Domain-Specific Computing

cong@cs.ucla.edu
http://cadlab.cs.ucla.edu/~cong

Challenge with Processor Design — Power Barrier

+ Current solution: Parallelization
+ Again face serious challenge

sun’s surface

1000
Power doubles every 4 years

nuclear reactor

=)
3
TTT

Parallelization

Pentium® V

Pentium lII®
hot plate Pentium lI®

-

: / Concerns:
i . T
[/ ‘ oC

1.5p 1.0p 0.7p 0.5p 0.35u

Wiatts/cm?

3>
AR

—— Dark silicon
0.25u 0.18u 0.13p 0.10p 0.07u

L]
Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

8/9/16

CDSC Focus: Customization and Specialization

sun’s surface

1000
Power doubles every 4 years
: nuclear reactor .
Parallelization
100 . .
o Customization
5
2 [
§ L Pentium lll®
100 hot plate Pentium I1® Adapt the architecture to
: Pentium Pro® application domain

1.5p 1.0p 0.7p

054 0354 0250 08y 013y 040y 007

Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

UCLA Newsroom

Homa

All Storkes
All Stories

Fe

atured News

Mews Relaases

5
Images

Mulimeda

Rasaarch

Health Scences
Arts & Humantics
Student Affairs

Acadamics & Fac

Campus News
Media Contacts

W Images
@ video

W Blags

For the Media
Contacts

Potrws releases
Arvrones

About WCLA

UCLA Mewsoom > All stores » News Releases

NSF awards UCLA $10 million to create
customized computing technology

By Wilean Wong Krombout| B/11,/2009 9:45:00 AM

The LUCL& Henry Samueli Schoal of Enginesning and Applied Soence has bsen awarded a 510 million
grant by the Mabional Soence Foundation's Expaditions in Computing program be develop high-
parformance, enargy sfficsent, customizable computing that could revalutione the way computers ars
usad in haalth care and other important applications.

In partcitar, UCLA Engineering researchers will damanstrate how tha new technalogy, known as

i COMpUting, could transfo e rale of medical imaging and hemody namic Simulaben,
providing mare cost-effective and corvenient solutions for praventees, diagnostic and therapeutic
pracaduras and dramatically improving haalth care quality, efficiency and patiant outcomes,

“This significant award is another testament to the workd-class faculty hera at UCLA whi canfinae to
push the envelope b Solve Sociely’s Most pressing issues,” said WOLA Chancellor Gers Block. "We are
gratetul to the NSF, which has repeatedly pravided crucial fundng to our faculty, helping to place the
university amang the nation’s top fve in research Funding.”

Ini an effort to mest ever-increasing computing needs in various fields, the computing industry has
entered an "era of parallelization,” in which tens of thousands of computer serverd are donnscted in
warshouse-scale data centers, sald Jason Cong, the Chancalior's Professor of Compuber Scenos and
director of the new UCLA Center far Domain-Specific Comauting (CDSC), which will averses the
research, Bul thess parallel, general-purpose computing systems still face serious dhallenges in terms
of perfarmance, energy, space and cost.

Domain-specific computing holds significant advantages, Cong said. While general-purpass computing
redies an computer architecture and languages aimed at any type of application, domain-specific
eomputing utilipes & customizable archilscture and custom-ofiented, high-lewsl computer langubges
tailored to a particular application area or domain = in this case, medical imaging and hemodynamic
modeling. This customization ultimately results in much bess energy consumption, faster results, lower
costs and increased productivity.

The goal of the rew UCLA canter, Cang said, is to lock beyond parallelization and focus on domain-
spaxcific customization to bring significant power-performance effidency improvement to impaortant
application domains.

8/9/16

Overview of Our Approach -- Customized Computing with
Accelerator-Rich Architectures

< Extensive use of dedicated and composable accelerators

= Most computations are carried on accelerators - not on processors!
< A fundamental departure from von Neumann architecture

+ Why now?
= Previous architectures are device/transistor limited
= Von Neumann architecture allows maximum device reuse
* One pipeline serves all functions, fully utilized
+ Future architectures
= Plenty of transistors, but power/energy limited (dark silicon)

= Customization and specialization for maximum energy efficiency

+ A story of specialization

Lessons from Nature:
Human Brain and Advance of Civilization

+ High power efficiency (20W) of human brain comes from specialization
= Different region responsible for different functions
+ Remarkable advancement of civilization also from specialization

= More advanced societies have higher degree of specialization

What HoT to SAY
"Worrying (talking
o yourself about
wht ot o do)

Face Names
Left Brain
Temporal

© 2001 Stephen Holland Lobe
v hiddantalants.arg (memory)

8/9/16

Intel’s $16.7B Acquisition of Altera

(in tel)
June 1, 2015
Intel to Acquire Altera
Enables New Classes of Products in High-Growth Data Center and Internet of Things Market Segments
Combination Hamesses the Power of Moore's Law to Accelerate Altera's Existing Businesses

Expected to be Accretive to Non-GAAP EPS and Free Cash Flow in First Year After Close

SANTA CLARA, Calif. & SAN JOSE, Cali ESS WIRE)-- Intel Corporation (NASDAQ: INTC) and Altera Corporation
(NASDAQ: ALTR) today announce definit agreement under which Intel would acquire Altera for $54 per share in an all-
cash transaction valued at approximately $16.7 billion

> Intel CEO Brian Krzanich noted, “The acquisition will couple Intel’s
leading-edge products and manufacturing process with Altera’s
leading field-programmable gate array (or FPGA) technology.” He
further stated, “The combination is expected to enable new classes
of products that meet customer needs in the data center and
Internet of Things market segments.”

FALCON CONFIDENTIAL 7

Levels of Customization

+ Single-chip level

= Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]

o Server node level
= Host CPU + FPGA via PCl-e or QPI connections

¢ Data center level

= Clusters of heterogeneous computing nodes

8/9/16

Composable Accelerators with Programmable
Fabrics [ISLPED’2013]

(] [] =] =] [=] [
(=] [[[=] [
=] [[EE

(=] [[= = Dynamic Resource
o] l=]][] [=][c] Allocation of ABBs
e (=] =] =]] B

‘DMA ComrollerH m ‘ E E‘ E‘

Mem Controller L2 Bank ABB Island
PF

Programmable Cgre Accelerator
Fabric Block Block Composer

¢ Enhancement [ISLPED 2013]: with 20% of the chip area dedicated to
programmable fabric, we can achieve more:

= Flexibility: An average 8.2x (up to 146x) speedup in other domains, such as
commercial, vision and navigation
= Longevity: 22x speedup on a new application within the medical imaging domain

Levels of Customization

+ Single-chip level
= Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]

o Server node level
= Host CPU + FPGA via PCl-e or QPI connections

¢ Data center level

= Clusters of heterogeneous computing nodes

8/9/16

A Success Application: Low-Dose Adaptive CT Scan

| 2. Image
Reconstruction

). | -
T

| e —4

n.. ’

1. Initial Scan

(low-dose CT scan) a 3. Automated
Q* Detection

If no nodules are seen on
the low-dose CT study,

‘Y\ : the patient can go home
] without any further
. e | imaging required.
5. Clinical 4. Adaptive Diagnostic Scan
Interpretation

If nodules are detected, a diagnostic
follow-up scan is performed during the

same visit. v
D
N Center -H al 9 e ¥ ﬁ

SCEEERE RADIOLO G

5 Years of Accelerating Medical Image Processing

2010 2013 2015 (Today)
CT image 18 hours 20 minutes 6 minutes
reconstruction Single thread CPU FPGA acceleration on Convey 4 Virtex-6 FPGAs on Convey w/data reuse
Denoising 5 minutes 15 seconds 3 seconds

Single thread CPU NVidia GPU Core i7 Haswell, OpenMP, stencils
Registration 10 minutes 2 minutes 30 seconds

Single thread CPU NVidia GPU Core i7 Haswell, OpenMP, stencils
Segmentation 20 minutes 4 minutes 1 minute

Single thread CPU Multithread CPU Core i7 Haswell, OpenMP, stencils
Analysis 45 minutes 18 minutes 5 minutes*

Single thread CPU Multithread CPU Core i7 Ha_swell, OpenMP

accuracy

.G i = - B

N

Workstation CPU, GPU, FPGA, CPU

8/9/16

Example of CDSC Heterogeneous Computing Server

“Commodity” Intel Server Convey FPGA-based coprocessor

Application Application Engines Direct
i Data

i Eng:r\m Hub (AEs) pata

Intel® i (AEE, e = _

Memory| XC6v[x760 FPGAs
Controllf: 80GB/s off-chip bandwidth J

Processor

Xeon Quad Core LV5408 Jub_(M 94W Design Power
40W TDP
Intel® /O
VIETNOrY L T T AICMOIVA. A T
Subsystem J eev.L., POe
Standard Intel® x86-64 Convey coprocessor
Server FPGA-based
x86-64 Linux Shared cache-coherent memory

More CPU-FPGA Platforms
Alpha Data HARP

PCle-based, Separate Memory QPI-based, Shared Memory
AT . . l'(-

8/9/16

Levels of Customization

m Single-chip level

= Require new processor designs, e.g. using composable
accelerators [ISLPED’ 12, DAC’14]

m Server node level
= Host CPU + FPGA via PCl-e or QPI connections [DAC’16]

m Data center level

= Clusters of heterogeneous computing nodes [DAC’16]

= How about programming at data center level? [HotCloud’16]

Data Center Energy Consumption is a Big Deal

In 2013, U.S. data centers consumed an estimated 91
billion kilowatt-hours of electricity, projected to increase to
roughly 140 billion kilowatt-hours annually by 2020

* 50 large power plants (500-megawatt coal-fired)
* $13 billion annually
* 100 million metric tons of carbon pollution per year.

https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-
amounts-energy)

16

8/9/16

Extensive Efforts on Improving Datacenter
Energy Efficiency
< Understand the scale-out workloads
= |SCA'10, ASPLOS12
= Mismatch between workloads and processor designs;
= Modern processors are over-provisioning
+ Trade-off of big-core vs. small-core

= [SCA'10: Web-search on small-core with better energy-efficiency
= Baidu taps Mavell for ARM storage server SoC

17

Datacenter Level Integration at Microsoft

A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA2014 18

8/9/16

Focus of Our Study

m Evaluation of different integration options of
heterogeneous technologies in datacenters

m Efficient programming support for heterogeneous
datacenters

Small-core on Compute-intensive Workloads

+ Data set + Baselines
* MNIST 700K Samples = Xeon: Intel E5 2620
= 784 Features, 10 Labels 12 Core CPU 2.40GHz
« Benchmarks (MLLib) = Atom: Intel D2500 1.8GHz

= LR: logistic regression * ARM: A9 in Zynq 800MHz

= KM: k-mean clustering < Power consumption
Results (averaged)
= Normalized to reference Xeon = Xeon: 175W/node
performance = Atom: 30W/node

= ARM: 10W/node (embedded)

v

8/9/16

10

Small Cores Alone Are Not Efficient!

21

Small Core + ACC: FARM

< Boost Small-core Performance with FPGA

1Gbps
Ethernet
Switch

X

le—

Pro:

sing System

HDFS

ACC
Framewol k

H Accelerators

DRAM

7

AXI_Bus

e] [

ZC706 Board

Programmable Logics

Programmable Logic:

- 8 Xilinx ZC706 boards
- 24-port Ethernet switch
-~100W power

1

1

1

1

1
DRAM : Accelerators

ZC706 Board

22

8/9/16

11

8/9/16

Small-core with FPGA Performance

2 Setup E m|R @KM
= Data set a % @ .
* MNIST 700K Samples >3 S o
= o o ©
* 784 Features, 10 Labels % 3 % © 2
. = —7777
= Power consumption (averaged) o BX ARM S ATOM 8X ZYNG

* Atom: 30W/node
* ARM: 10W/node §

4.88

¢ Results

= Normalized to reference Xeon
performance

—
N
©
~
o
©
©
5 oS
—77 7

8X ARM 8X ATOM 8X ZYNQ

NORMALIZED
ENERGY

043

23

Small Cores + FPGAs Are More Interesting!

24

12

Inefficiencies in Small-core

+ Slower core and memory clock
= Task scheduling is slow
= JVM-to-FPGA data transfer is slow

¢ Limited DRAM size and Ethernet bandwidth

= Slow data shuffling between nodes

+ Another option: Big-core + FPGA

25

Big-Core + ACC: CDSC FPGA-Enabled Cluster

¢ A 24-node cluster with FPGA-based accelerators

= Run on top of Spark and Hadoop (HDFS)

1 master /
driver

1 10GbE switc

{8

22 workers

1 file server [

e
e M -

T curm St e <t i e il ey

—S

3.
4.

Alpha Data board:

1. Virtex-7 FPGA

2. 16GB on-board
RAM

Each node:
1.
2.

Two Xeon processors
One FPGA PCle card
(Alpha Data)

64 GB RAM

10GBE NIC

26

8/9/16

13

Experimental Results

< Experimental setup

= Data set
* MNIST 700K Samples
* 784 Features, 10 Labels

NORMALIZED
EXECUTION TIME

o2}
©
o
a2} Il
I3e} [=}
/)

¢ Results 1X XEON+AD 8X ZYNQ

= Normalized to reference . 8
Xeon performance S

o]
o

-

1X XEON+AD 8X ZYNQ

0.43

NORMALIZED
ENERGY

27

Overall Evaluation Results

+ Based on two machine learning workloads

= Normalized performance (speedup), and energy efficiency
(performance/W) relative to big-core solutions

Performance A
Efficiency
Big-Core+FPGA Best | 2.5 Best | 2.6
Small-Core+FPGA Better | 1.2 Best | 1.9
Big-Core Good | 1.0 Good | 1.0
Small-Core Bad | 0.25 Bad | 0.24

28

8/9/16

14

How to Program Such “Beasts”?

-- “Write Once, Accelerate Anywhere”

29

C/C++ Based Synthesis for Accelerator Design
xPilot (UCLA 2016) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx 2011-)

Design Specification

4 | CIC++/SystemC | |User Constraints
[2) - ~ g

w o

] 3

= 3 Compilation & AutoPilot™

§- ? Aboration m

& o »

& g -

% o [Code transformation & opt] 2

g & I s

= o

(7]

S C,) (Benavioral & Communication| & | Fiatiorm
2 Characterization|
% kSVn\hnIs and Optimizations Ry
S

& RTLHDLs & | [Timing/Power/Layout]

T, RTL SystemC Constraints

= <
- or ASIC blocks

Platform-based C to RTL
synthesis

Synthesize pure ANSI-C and C+
+, GCC-compatible compilation
flow

Full support of IEEE-754
floating point data types &
operations

Efficiently handle bit-accurate
fixed-point arithmetic

SDC-based scheduling
Automatic memory partitioning

QoR matches or exceeds manual
RTL for many designs

Developed by AutoESL, acquired by Xilinx in Jan. 2011

30

8/9/16

15

AutoPilot Results: Sphere Decoder (from Xilinx)

-]
+ Wireless MIMO Sphere L 4xa i verse | [
Matrix atrix
Decoder oo ST oo e i

— ~4000 lines of C code

Ly

— Xilinx Virtex-5 at 225MHz 3x3 YV E— —
+ Compared to optimized IP aro [B2ck s Searat -

— 11-31% better resource

usage 2x2 2x2 Matrix Inverse e
Matrix Matrix
" Back Search/ [~
muitiply QRD 1 Subst. multiply | | Reorder

RTL AutoPilot L SO RD Tree Search Sphere Detector Min
Expert | Expert QRD e Search

LUTs 32,708 29,060

s |

|

I

Register 44,885 31,000
s

DSP48s 225 201

TCAD April 2011 (keynote paper)
“High-Level Synthesis for FPGAs: From
Prototyping to Deployment”

BRAMs 128 99

CCel SUpports

SDAccel Development Environ©penct 1.0 fmbedded

with some 1.2/2.0
\ features
] coce

Host code Kernel code
— OpenCL APIs — OpenCL kernel
—C/C++ code

SDAccel”| -oen

Environment —RTLIP

— 3 party library
code
~N
OpenCL DDR memory
Runtime

POWERS

[
i

:

13 13 1

Library
OXILNX

1
2
Noldosenndndls

binary
CAPI/ PCle el
N Y,

8/9/16

16

Design Complexity Can Still be High — Example:
Medical Image Processing Pipeline

Streaming vs. shared ?

3-D images
FIFO vs. switching buffer? \
o G .
Synec. granularity ? Segmentation

Address mapping ?

L

[SegMean [€

Gradient

h 4) 2 | SegBodyStage1

Y

Data prefetching ?

HW or SW ?

Data reuse ?

Implementation options ?
Buffer size vs. bandwidth ?

Duplication ? .
On-chip memory throughput ?

System performance?

CMOST: Fully Automated Compilation and Mapping Flow
[DAC 2015]

Application: C/C++/OpenMP4.0 User Directives Platform Spec.

System Optimizah%\
i v

Task graph(-
R [Module evaluation I Data reuse]
L4

\

j

" [Task graph extraction] N
@ [Block streaming I Prefetching] <
> hardware . == J
S [HW/SW partitioning] mode [Module select}on & duplication]
; design parameters
S [Driver generation]
S
3 [OpenCL generation] Module templates, Configure C/RTL/scripts
System IP templates | | | i) 4
q (CRTL) ™ Xilinx Vivado HLS N
[Test generation] OpenCL e
K\ Xilinx Vivado /
i v v
design analysis/impl. report On-board Retargetable and optimized
executable HW/SW OpenCL source code

8/9/16

17

Recent Research - Optimizations Beyond HLS

Loop Structure
Optimization

Program Analysis

Loop
Restructuring

Code Generation

Data Layout
Optimization

Array Partitioning

Data Reuse

.

/
Inter-Module
Optimization

.

4)
=3
=]
=3
(R
< <] L2
2
o
(]
-+
x
- J

J/
Module Selection/ \
replication

Communication
Optimization
Module-level

Scheduling)

Polyhedral-Based Data Reuse
Optimization for Configurable Computing
FPGA’13 Best Paper Award

Improving Polyhedral Code Generation
for High-Level Synthesis CODES-ISSS’14
Best Paper Award

Theory and Algorithm for Generalized
Memory Partitioning in High-Level
Synthesis, FPGA'14

An optimal microarchitecture for stencil
computation acceleration based on non-
uniform partitioning of data reuse buffers
(DAC’14)

Combining Computation with
Communication Optimization in System
Synthesis for Streaming Applications,
FPGA14

Example: Throughput-Driven Task Scheduling and

Mapping [FPGA’2014]

J’ Interpilmion — Throughput Module High-level
(Lsradient (vea) Selection Performance
! jon_ Engine Model

(_Riciant] ((vea)
segmentation_2
«— Best solution
dequant@sw
el row@sw dequant@hw dequant@hw x3
lact.
= = -

g,

p Acc

@

DRAM DRAM

BRAM| [DRAM

mapping 0

mapping 1

mapping 2

8/9/16

18

Motivation
Tile size: 32x32 tile 3 > tile3
Image: 64x64, 4 tiles tile 2 tile 2
tile1 — tile 1
tile 0 ! > tile0
gradient rician

m Which implementation to use for each module?

= Memory partitioned v.s. non-memory-partitioned

non-partitioned gradient 128 21 2511 2125
partitioned gradient 176 56 7147 7262
partitioned rician 128 22 4692 3991
non-partitioned rician 176 88 14475 15537 .
Motivation
Tile size: 32x32 tile 3 > fle3
Image: 64x64, 4 tiles tile 2 tile 2
tile 1 ! tile 1
tile 0 ! > tile0
gradient rician

= How many number of replicas?

m Scheduling and Communication cost (number of tiles in the communication
channel)?

tiled T———> file3 tile 3 /\] tile 3
tile 2 <<> tile 2 v tile 2 «— ™ tile 2
tle1 —> tile1 tile 1 tile 1
tle0 S tile0 tile 0 /\f tile 0
gradient rician gradient rician
scheduling 0 1 tile scheduling 0 >2 tiles

38

8/9/16

19

A Rich Design Space: System-Level Synthesis
with HLS for Streaming Applications

choice to use?

Module&) + M» +

Which implementation W (Number of replicas?

— Explore data paralleli;m
Module

Replication

Module
Selection

Communication
Optimization

Scheduling

[_impLA [impl_B |

L L L L
50 100 150 200

—Producer/Consumer data rate

matching problem

What is the minimum buffer size?|
modules?

LHow to schedule all the ¥

39

Experiments on Example Denoise
= Our methodology: ST-Syn

= computation & communication co-optimization

m Separate:
= separate computation opt. + communication opt.
m > Communication and computation should be considered in a unified
framework

w ———Average area

0,

M Logic
H BRAM

Performance (fps)

40

8/9/16

20

More is Needed for
Data Center Level Deployment

41

Scalable Big-Data Programming

m Simplified programming .1 points = sc.textfile().cache()

for (i <- 1 to ITERATIONS) {
mOdels val gradient = points.map(p =>
= MapReduce, Dataflow (1 /7 (1 + exp(-p.y*(w dot p.x)))
. - 1) *p.y * p.x
m User-transparent Runtime ~)-reduce(_ +)
w -= gradient
= Distributed computing }
= Scheduling and resource
management @l

= Fault-tolerance Q @l / Spark Worker
Spark Driver ~ Spark Master\~ @l

Spark Worker

42

8/9/16

21

Next-Generation DNA Sequencing

An individual’s genome samples

l Fragmented into reads

l Sequenced by chemical sequencer

Mapped by software aligner
INDEPENDENTLY

43

The Solution: Heterogeneous Cluster Computing

> Processing billions of reads (strings) independently
= Fit the MapReduce programming model perfectly
= As for the long reference genome? Spark’s broadcast variables

> Inside each read’s alignment process

= Step #1: Seeding
* Exact string matching
* Linear time complexity

= Step #2: Extending
* Approximate string matching
* The Smith-Waterman dynamic programming algorithm (Quadratic time complexity)
* Accelerated by FPGAs

44

8/9/16

22

Straightforward Integration: 1+1 < 0.001

The Spark Program
= CS-BWAMEM [HitSeq "15]

= Aligning billions of short reads onto the
reference human genome in parallel

The Accelerator [FCCM "15]

= A throughput-oriented FPGA accelerator
for the Smith-Waterman DP kernel

The Straightforward JNI Integration
* CPU: 2.1 x 10° reads per second
= FPGA: 1.6 reads per second

AXI Interconnect Bus
X256 bits

Controller
[distributor & collector }‘_’]

X256 bits.
i

256 bits 256 bits
FIFO FIFO

X232 bits

Distributor
& Collector

Distributor Distributor

& Collector & Collector

PEArray 1 PEArray 2 PE Array M
3
ﬁ ﬁ

On CPU

One read

=24 DPs

=20 ps per DP
= 2.1 x 10° reads/s

On FPGA
One DP
= 25 ms data

transfer

= 1.6 reads/s

While JNI serves as a standard approach to connect JVMs with FPGAs,

a straightforward integration through JNI degrades the performance by 1000x.

45
What happened in a CPU-FPGA communication instance?
> Java Heap <> Native Memory e —
Cores || LLC i
> Host Memory < Device Memory
L
Zz=
9 : —
e N\ /7 N\ gl{—o— PCle advertised 8.0
7 7/~ PCletmemcpy theoretical
Host Device 3 6'—c— PCle+memcpy+alloc 6.8
Pageable g
Memory 5 5
) 34 38
5 27
. 2
‘l;:::; - Device Memory e 1 For oo 16
Ohenca . .
_ J J/ % 3
P I SIS I
Payload Size in Bytes 46

8/9/16

23

Why communication matters?

def map_func(input:U):V = {

> Each map function is likely to /70> P> Qs v

process only a small volume of 1P = cnvl(input)
data with a small amount of t2:Q = cnv2(tl)
execution time 3 Vo= cnv3(t2)

= One read is only 101 ASCII characters | }
= One line of a text file rdd_out = rdd_in.map(ele=>map_func(ele))

= One record of a NoSQL table

» Communication overhead can def map_func(input:Array[U]):Array[V] = {
. // Array[U] => .. => Array[V]

be amortized by batch tl:Array[P] = cnvl_batch(input)
processing t2:Array[Q] cnv2_batch(tl)
t3:Array[V] = cnv3_batch(t2)

t3

}

rdd_out = rdd_in.map(ele=>map_func(ele))

47

Let’s first do batch processing manually

Batch | | Batch | | Batch | | Batch | | Batch
#3

#H # #
S-W SW S-W
#
Read #2 SWLUSW| || SW[Lsw 10
M [Read Batch Size=16384

Read #1|| >V |1

I Read Batch Size=32768

= W 2 B Read Batch Size=65536
£ | |Read#3|| > g
= il g
-])
3 ilicallEallealiEal Dependency Clainofs &
§ | |Read#4|| *" 7, SWLY(sw |fsw 7 (g pendency Clainofa o
% AL [L] (s) (L read's SWTasks 3
] L] [— g
-W -W o
Read#S SW || S-W [| W g
8 # #
Cl (1 S-W Batch
Read #6 77 R Y P T
\ I\ / Thresholds

Dependency/Irregularity-Aware Batch Processing

48

8/9/16

24

Accelerator-as-a-Service

§\\\\ (] = memmmeea

|

B

_______ » Accelerator - ;lb'o’

Container

GPU

N
FPGA

350
5 -
€300 Container
2
$250
g
Global Accel 52"
obal Acceler: n
GAM <§1 g
o
Node Accelerai2 100
local acceleratc” 50 imunication optimization
NAM

0
5
Number of Spark Worker Nodes

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

49

Blaze Runtime System

> A system providing Accelerator-as-a-Service
= Provide a better programming model:

* APIs for accelerator developers

« Easier to integrate into big-data workload, e.g. Spark and Hadoop

* APIs for big-data application developers

Y
« Requires no knowledge about accelerators ”\ﬁ ~

= Provide an accelerator management runtime “ |

* Supports FPGAs and GPUs

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

50

8/9/16

25

Runtime Flow

> Accelerator Registration

= Register accelerator service to

corresponding nodes User Application

> Job Accelerator Request ACC Labels Containers

= Use acc_id as label

= GAM allocates containers to ACC Invoke,
. Input data,
corresponding nodes Output data
> JOb exeCUtlon Container Info ACC Info
= Adopts several optimization
techniques, e.g. Double-buffering, FPGA
caching I—l
GPU
ACC

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

51

Falcon Computing Solutions, Inc.
http://www.falcon-computing.com

[
[

User Applications in
MapReduce/Spark/Hadoop
+

ACC: accelerator

JavalC/C++/0

ACC Engines

Merlin Overall Computing Solutions
Compiler Kestrel
FCS Runtime
Libraries

Customize &

The only solution of FPGA customization and . .
Virtualize

virtualization for Datacenter acceleration!

©Copyright 2016 Falcon Computing Solutions

52

8/9/16

26

Merlin Compiler

C/C++ with pragmas

C-based design flow @
+ OpenMP-like high-level O —
programming model Optimizations
+ Automatic optimizations for @
productivity and QoR OpenCL Generation
+ Same input for multi-vendors and @
Optimized OpenCL
multi-platforms
OpenCL backend
[(Altera/Xilinx)]

System executables 5
©Copyright 2016 Falcon Computing Solutions

Sample Compilation Results

Merlin Initial Manual Optimized
Compiler OpenCL OpenCL

Blackschole 0.34ms 11ms

Denoise 0.08s 3.8s NA
LogisticRegr 94ms 3.7s 94ms
MatMult 0.8ms 1.9ms 0.8ms
NAMD 26ms 91ms 26ms
Normal 4ms 22ms 10ms
TwoNN 1.23s 1.70s NA
Average 1x 21x 1.3x

54
©Copyright 2016 Falcon Computing Solutions

8/9/16

27

Kestrel Runtime And Blaze

Accelerated Applications
(Spark/MapReduce/C/Java)

|

Falcon
Kestrel Runtime

Falcon
Accelerator Libraries

Management tools

Customized Platform Support

Falcon
Merlin Compiler

Accelerators

CPUVFPGA i 2U

Offline customization Runtime Virtualization

55

Concluding Remarks

+ New era of computing
= Accelerator-centric computing
= Need efficient support for customization and specialization
+ Customization at all levels
= Chip-level
= Server node level
= Data center level
+ Data center level customization holds great promise
= That's where workload aggregates
+ Software is the key
= Programming models
Hadoop/MapReduce or SPARK (+ C/C++), OpenMP, OpenCL,, ...
= Compilation support
= Runtime management

56

8/9/16

28

Acknowledgements — CDSC and C-FAR

+ Center for Domain-Specific Computing (CDSC) under the NSF Expeditions in
Computing Program and C-FAR Center under the STARnet Program

+ CDSC faculty:

Aberle Baraniuk Bui
(UCLA) (Rice) (UCLA)

Cong (Director)
(UCLA)

2 7\ S
Palsberg Potkonjak Reinman Sadayappan Sarkar Vese
(UCLA) (UCLA) (UCLA) (Ohio-State) (Associate Dir) (UCLA)
(Rice)

57

Postdocs, Graduate Students, and Collaborators

Prof. Deming Chen Yuting Chen Zhenman Fang Hui Huang Muhuan Huang
(UIUC/ADSC) (UCLA) (UCLA) (UCLA) (UCLA)

Dr. Peng Li Prof. Louis-Noél Pouchet Yuxin Wang
(UCLA) (UCLA) (PKU)

A

-

I

e

Dr. Peng Zhang Zou ‘ Wei Zuo
(UCLA) (UCLA) (uluc) 58

Bingjun Xiao
(UCLA)

8/9/16

29

