
8/9/16

1

1

Customizable Computing at Datacenter Scale

Jason Cong
 Chancellor’s Professor, UCLA

 Director, Center for Domain-Specific Computing
cong@cs.ucla.edu

http://cadlab.cs.ucla.edu/~cong

2

Challenge with Processor Design – Power Barrier

Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

♦  Current solution: Parallelization
♦  Again face serious challenge

i386
i486

Pentium®
Pentium Pro®

nuclear reactor

Pentium II®
Pentium III®

Pentium® 4

hot plate

rocket
nozzle

sun’s surface

Parallelization

1.5µ 1.0µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.10µ 0.07µ
1

10

100

1000

W
att

s/c
m2

Power doubles every 4 years

Concerns:
•  TOC
•  Dark silicon
•  …

8/9/16

2

3

CDSC Focus: Customization and Specialization

Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

Adapt the architecture to
application domain

i386
i486

Pentium®
Pentium Pro®

nuclear reactor

Pentium II®
Pentium III®

Pentium® 4

hot plate

rocket
nozzle

sun’s surface

Parallelization
Customization

1.5µ 1.0µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.10µ 0.07µ
1

10

100

1000

W
att

s/c
m2

Power doubles every 4 years

4

8/9/16

3

Overview of Our Approach -- Customized Computing with
Accelerator-Rich Architectures

◆ Extensive use of dedicated and composable accelerators
§  Most computations are carried on accelerators – not on processors!

◆  A fundamental departure from von Neumann architecture

◆  Why now?
§  Previous architectures are device/transistor limited
§  Von Neumann architecture allows maximum device reuse

•  One pipeline serves all functions, fully utilized

◆  Future architectures
§  Plenty of transistors, but power/energy limited (dark silicon)
§  Customization and specialization for maximum energy efficiency

◆  A story of specialization

Lessons from Nature:
Human Brain and Advance of Civilization
♦  High power efficiency (20W) of human brain comes from specialization

§  Different region responsible for different functions
♦  Remarkable advancement of civilization also from specialization

§  More advanced societies have higher degree of specialization

8/9/16

4

Intel’s $16.7B Acquisition of Altera

Ø  Intel CEO Brian Krzanich noted, “The acquisition will couple Intel’s
leading-edge products and manufacturing process with Altera’s
leading field-programmable gate array (or FPGA) technology.” He
further stated, “The combination is expected to enable new classes
of products that meet customer needs in the data center and
Internet of Things market segments.”

FALCON CONFIDENTIAL 7

Levels of Customization

◆ Single-chip level
§ Require new processor designs, e.g. using composable

accelerators [ISLPED’ 12, DAC’14]

◆ Server node level
§ Host CPU + FPGA via PCI-e or QPI connections

◆ Data center level
§ Clusters of heterogeneous computing nodes

8/9/16

5

Composable Accelerators with Programmable
Fabrics [ISLPED’2013]

Dynamic Resource
Allocation of ABBs

♦  Enhancement [ISLPED 2013]: with 20% of the chip area dedicated to
programmable fabric, we can achieve more:
§  Flexibility: An average 8.2x (up to 146x) speedup in other domains, such as

commercial, vision and navigation
§  Longevity: 22x speedup on a new application within the medical imaging domain

Levels of Customization

◆ Single-chip level
§ Require new processor designs, e.g. using composable

accelerators [ISLPED’ 12, DAC’14]

◆ Server node level
§ Host CPU + FPGA via PCI-e or QPI connections

◆ Data center level
§ Clusters of heterogeneous computing nodes

8/9/16

6

1. Initial Scan
(low-dose CT scan)

2. Image
Reconstruction

3. Automated
Detection

4. Adaptive Diagnostic Scan

If nodules are detected, a diagnostic
follow-up scan is performed during the
same visit.

5. Clinical
Interpretation

If no nodules are seen on
the low-dose CT study,

the patient can go home
without any further
imaging required.

A Success Application: Low-Dose Adaptive CT Scan

5 Years of Accelerating Medical Image Processing
2010 2013 2015 (Today)

CT image
reconstruction

18 hours
Single thread CPU

20 minutes
FPGA acceleration on Convey

6 minutes
4 Virtex-6 FPGAs on Convey w/data reuse

Denoising 5 minutes
Single thread CPU

15 seconds
NVidia GPU, stencils

3 seconds
Core i7 Haswell, OpenMP, stencils

Registration 10 minutes
Single thread CPU

2 minutes
NVidia GPU, stencils

30 seconds
Core i7 Haswell, OpenMP, stencils

Segmentation 20 minutes
Single thread CPU

4 minutes
Multithread CPU

1 minute
Core i7 Haswell, OpenMP, stencils

Analysis 45 minutes
Single thread CPU

18 minutes
Multithread CPU

5 minutes*
Core i7 Haswell, OpenMP
* New detection method w/improved

accuracy

Workstation CPU, GPU,
FPGA
platform

FPGA, CPU
platform

2010
18 hours
Single thread CPU

5 minutes
Single thread CPU

10 minutes
Single thread CPU

20 minutes
Single thread CPU

45 minutes
Single thread CPU

2013
20 minutes
FPGA acceleration on Convey
15 seconds
NVidia GPU

2 minutes
NVidia GPU

4 minutes
Multithread CPU

18 minutes
Multithread CPU

2015 (Today)
6 minutes
4 Virtex-6 FPGAs on Convey w/data reuse

3 seconds
Core i7 Haswell, OpenMP, stencils

30 seconds
Core i7 Haswell, OpenMP, stencils

1 minute
Core i7 Haswell, OpenMP, stencils

5 minutes*
Core i7 Haswell, OpenMP

8/9/16

7

Intel®
Xeon®
Processor Intel®

Memory
Controller
Hub (MCH)

Intel® I/O
Subsystem Memory Memory

Application
Engine Hub
(AEH)

Application Engines
(AEs)

Direct
Data
Port

“Commodity” Intel Server Convey FPGA-based coprocessor

Standard Intel® x86-64
Server
 x86-64 Linux

Convey coprocessor
 FPGA-based
 Shared cache-coherent memory

Xeon Quad Core LV5408
40W TDP

XC6vlx760 FPGAs
80GB/s off-chip bandwidth
94W Design Power

Example of CDSC Heterogeneous Computing Server

13

14

More CPU-FPGA Platforms

14

8/9/16

8

15

Levels of Customization

n Single-chip level
§ Require new processor designs, e.g. using composable

accelerators [ISLPED’ 12, DAC’14]

n Server node level
§ Host CPU + FPGA via PCI-e or QPI connections [DAC’16]

n Data center level
§ Clusters of heterogeneous computing nodes [DAC’16]
§ How about programming at data center level? [HotCloud’16]

16

Data Center Energy Consumption is a Big Deal

In 2013, U.S. data centers consumed an estimated 91
billion kilowatt-hours of electricity, projected to increase to
roughly 140 billion kilowatt-hours annually by 2020

•  50 large power plants (500-megawatt coal-fired)
•  $13 billion annually
•  100 million metric tons of carbon pollution per year.

 https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-
amounts-energy)

8/9/16

9

17

◆ Understand the scale-out workloads
§  ISCA’10, ASPLOS’12
§ Mismatch between workloads and processor designs;
§ Modern processors are over-provisioning

◆ Trade-off of big-core vs. small-core
§  ISCA’10: Web-search on small-core with better energy-efficiency
§ Baidu taps Mavell for ARM storage server SoC

Extensive Efforts on Improving Datacenter
Energy Efficiency

18 A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA’2014

Datacenter Level Integration at Microsoft

FPGA FPGA

8/9/16

10

19

n Evaluation of different integration options of
heterogeneous technologies in datacenters

n Efficient programming support for heterogeneous
datacenters

Focus of Our Study

20

Small-core on Compute-intensive Workloads

10
.97

5.2
6 7.8

3.1
3

8X ARM 8X ATOM

NO
RM

AL
IZ

ED

EX
EC

UT
IO

N
TI

ME

LR KM

6.8
6

5.2
1

4.8
8

3.1

8X ARM 8X ATOM

NO
RM

AL
IZ

ED

EN
ER

GY

◆  Data set
§  MNIST 700K Samples
§  784 Features, 10 Labels

◆  Benchmarks (MLLib)
§  LR: logistic regression
§  KM: k-mean clustering

◆  Results
§  Normalized to reference Xeon

performance

◆ Baselines
§  Xeon: Intel E5 2620

12 Core CPU 2.40GHz
§  Atom: Intel D2500 1.8GHz
§  ARM: A9 in Zynq 800MHz

◆  Power consumption
(averaged)
§  Xeon: 175W/node
§  Atom: 30W/node
§  ARM: 10W/node (embedded)	

	

8/9/16

11

21

Small Cores Alone Are Not Efficient!

22

Small Core + ACC: FARM

- 8 Xilinx ZC706 boards
- 24-port Ethernet switch
- ~100W power

◆ Boost Small-core Performance with FPGA

8/9/16

12

23

Small-core with FPGA Performance

10
.97

5.2
6

0.6
9

7.8

3.1
3

1.0
6

8X ARM 8X ATOM 8X ZYNQ

NO
RM

AL
IZ

ED

EX
EC

UT
IO

N
TI

ME

LR KM

6.8
6

5.2
1

0.4
3

4.8
8

3.1

0.6
6

8X ARM 8X ATOM 8X ZYNQ

NO
RM

AL
IZ

ED

EN
ER

GY

◆  Setup
§  Data set

•  MNIST 700K Samples
•  784 Features, 10 Labels

§  Power consumption (averaged)
•  Atom: 30W/node
•  ARM: 10W/node	

◆  Results
§  Normalized to reference Xeon

performance

24

Small Cores + FPGAs Are More Interesting!

8/9/16

13

25

◆ Slower core and memory clock
§  Task scheduling is slow
§  JVM-to-FPGA data transfer is slow

◆ Limited DRAM size and Ethernet bandwidth
§ Slow data shuffling between nodes

◆ Another option: Big-core + FPGA

Inefficiencies in Small-core

26

22 workers

1 master /
driver

Each node:
1.  Two Xeon processors
2.  One FPGA PCIe card

(Alpha Data)
3.  64 GB RAM
4.  10GBE NIC

Alpha Data board:
1.  Virtex-7 FPGA
2.  16GB on-board

RAM

1 file server

1 10GbE switch

◆ A 24-node cluster with FPGA-based accelerators
§ Run on top of Spark and Hadoop (HDFS)

Big-Core + ACC: CDSC FPGA-Enabled Cluster

8/9/16

14

27

◆ Experimental setup
§ Data set

•  MNIST 700K Samples
•  784 Features, 10 Labels

◆ Results
§ Normalized to reference

Xeon performance

Experimental Results

0.3
3 0.6

9

0.5

1.0
6

1X XEON+AD 8X ZYNQ

NO
RM

AL
IZ

ED

EX
EC

UT
IO

N
TI

ME

0.3
8

0.4
3 0.5

6 0.6
6

1X XEON+AD 8X ZYNQ

NO
RM

AL
IZ

ED

EN
ER

GY

28

◆ Based on two machine learning workloads
§ Normalized performance (speedup), and energy efficiency

(performance/W) relative to big-core solutions

Overall Evaluation Results

Performance Energy-
Efficiency

Big-Core+FPGA Best | 2.5 Best | 2.6
Small-Core+FPGA Better | 1.2 Best | 1.9

Big-Core Good | 1.0 Good | 1.0
Small-Core Bad | 0.25 Bad | 0.24

8/9/16

15

29

How to Program Such “Beasts”?

-- “Write Once, Accelerate Anywhere”

30

C/C++ Based Synthesis for Accelerator Design
xPilot (UCLA 2016) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx 2011-)

♦  Platform-based C to RTL
synthesis

♦  Synthesize pure ANSI-C and C+
+, GCC-compatible compilation
flow

♦  Full support of IEEE-754
floating point data types &
operations

♦  Efficiently handle bit-accurate
fixed-point arithmetic

♦  SDC-based scheduling
♦  Automatic memory partitioning
♦  …
QoR matches or exceeds manual
RTL for many designs

C/C++/SystemC

Timing/Power/Layout
Constraints

RTL HDLs &
RTL SystemC

Platform
Characterization

Library

FPGA
or ASIC blocks

=

Sim
ulation, Verification, and Prototyping

Compilation &
Elaboration

Code transformation & opt

Behavioral & Communication
Synthesis and Optimizations

AutoPilotTM

C
om

m
on Testbench

User Constraints

ESL Synthesis

Design Specification

Developed by AutoESL, acquired by Xilinx in Jan. 2011

8/9/16

16

31

Toplevel Block Diagram

H
Matrix

multiply
Matrix

multiplyQRD Back
Subst.

4x4 Matrix Inverse Norm
Search/
Reorder

4x4

Matrix
multiply

Matrix
multiplyQRD Back

Subst.

3x3 Matrix Inverse Norm
Search/
Reorder

3x3

Matrix
multiply

Matrix
multiplyQRD Back

Subst.

2x2 Matrix Inverse Norm
Search/
Reorder

2x2

8x8 RVD
QRD

Tree Search Sphere Detector
Stage 1 Stage 8

Min
Search…

AutoPilot Results: Sphere Decoder (from Xilinx)

Metric	 RTL
Expert

AutoPilot
Expert
	

Diff
(%)	

LUTs 32,708 29,060 -11%

Register
s

44,885 31,000 -31%

DSP48s 225 201 -11%

BRAMs 128 99 -26%

•  Wireless MIMO Sphere
Decoder

–  ~4000 lines of C code
–  Xilinx Virtex-5 at 225MHz

•  Compared to optimized IP
–  11-31% better resource

usage

TCAD April 2011 (keynote paper)
“High-Level Synthesis for FPGAs: From
Prototyping to Deployment”

© Copyright 2016 Xilinx
.

Page 32

SDAccel	Development	Environment	

Host	
Code	

Kernel
Code

CAPI / PCIe FPGA	

DDR	memory	

OpenCL	
binary		

container	

OpenCL
Runtime
Library

Host	code 		
– OpenCL	APIs	
– C	/	C++	

Kernel	code	
– OpenCL	kernel	
code	

– C/C++		
– RTL	IP	
– 3rd	party	library	
code	

Chip
Interco
nnect

Core Core Core

L2 L2 L2

L2 L2 L2 L3
Bank

L3
Bank

L3
Bank

L3
Bank

L3
Bank

L3
Bank

Core Core Core

M
em

ory B
us

SM
P Interconnect SMP

C
API

PCIe
SMP

POWER8

SDAccel supports
OpenCL 1.0 Embedded

Profile
with some 1.2 / 2.0

features

8/9/16

17

Design Complexity Can Still be High – Example:
Medical Image Processing Pipeline

3-D images

•  HW or SW ?

•  Implementation options ?

•  Duplication ?

•  System performance?

•  Data prefetching ?

•  Data reuse ?

•  Buffer size vs. bandwidth ?

•  On-chip memory throughput ?

Denoise
Registration

Segmentation

•  Streaming vs. shared ?

•  FIFO vs. switching buffer?

•  Sync. granularity ?

•  Address mapping ?

Retargetable	and	opCmized	
OpenCL	source	code	

CMOST: Fully Automated Compilation and Mapping Flow
[DAC 2015]

ApplicaCon:	C/C++/OpenMP4.0	 User	DirecCves	

Task	graph	

hardware	
model	

design	analysis/impl.	report	

design	parameters	

OpenCL	

PlaNorm	Spec.	

Pr
og

ra
m
	A
na

ly
si
s	

System	Op7miza7on	

System	Genera7on	

Module templates,
System IP templates

(C/RTL)

On-board		
executable	HW/SW	

8/9/16

18

35

Recent Research - Optimizations Beyond HLS	

Program Analysis	

Input Code(C/C++)

Loop
Restructuring	

Code Generation	

Array Partitioning	

Loop Structure
Optimization	

Data Layout
Optimization	

Module Selection/
replication

Communication
Optimization
Module-level
Scheduling	

Inter-Module
Optimization	

Data Reuse	

Improving Polyhedral Code Generation
for High-Level Synthesis CODES-ISSS’14
Best Paper Award	

Theory and Algorithm for Generalized
Memory Partitioning in High-Level
Synthesis, FPGA’14	

Combining Computation with
Communication Optimization in System
Synthesis for Streaming Applications,
FPGA’14	

Polyhedral-Based Data Reuse
Optimization for Configurable Computing
FPGA’13 Best Paper Award	

An optimal microarchitecture for stencil
computation acceleration based on non-
uniform partitioning of data reuse buffers
(DAC’14)	

mapping	1	

Example: Throughput-Driven Task Scheduling and
Mapping [FPGA’2014]

mapping	0	 mapping	2	

…	

Throughput	

Best	soluCon	

8/9/16

19

37

Motivation

n Which implementation to use for each module?
§ Memory partitioned v.s. non-memory-partitioned

tile 3
denoise0 tile 2

denoise0 tile 1
denoise0 tile 0

gradient

tile 3
denoise0 tile 2

denoise0 tile 1
denoise0

Tile size: 32x32
Image: 64x64, 4 tiles

tile 0
rician

BRAM DSP FF LUT
non-partitioned gradient 128 21 2511 2125

partitioned gradient 176 56 7147 7262
partitioned rician 128 22 4692 3991

non-partitioned rician 176 88 14475 15537

38

Motivation

n  How many number of replicas?

n  Scheduling and Communication cost (number of tiles in the communication
channel)?

tile 3
denoise0 tile 2

denoise0 tile 1
denoise0 tile 0

gradient

tile 3
denoise0 tile 2

denoise0 tile 1
denoise0

Tile size: 32x32
Image: 64x64, 4 tiles

tile 0
rician

tile 3

denoise0 tile 2

denoise0 tile 1

denoise0 tile 0

gradient

tile 3

denoise0 tile 2

denoise0 tile 1

denoise0 tile 0

rician

tile 3
denoise0 tile 2

denoise0 tile 1
denoise0 tile 0

gradient

tile 3
denoise0 tile 2

denoise0 tile 1
denoise0 tile 0
rician

scheduling 0 à1 tile scheduling 0 à2 tiles

8/9/16

20

39

A Rich Design Space: System-Level Synthesis
with HLS for Streaming Applications 

Module	
Selec>on	

Module	
Replica>on	

Communica>on	
Op>miza>on	

Which	implementa>on	
choice	to	use?	

=	 ?	

Module	

System	

+ +	 …

Number	of	replicas?		
–	Explore	data	parallelism	

What	is	the	minimum	buffer	size?	
–Producer/Consumer	data	rate	
matching	problem	

How	to	schedule	all	the	
modules?	

Scheduling	

A	 B	

cycles	

40

Experiments on Example Denoise
n  Our methodology: ST-Syn

§  computation & communication co-optimization

n  Separate:
§  separate computation opt. + communication opt.

n  à Communication and computation should be considered in a unified
framework

Average area
reduction: 47%

8/9/16

21

41

More is Needed for
Data Center Level Deployment

42

n Simplified programming
models
§ MapReduce, Dataflow

n User-transparent Runtime
§ Distributed computing
§ Scheduling and resource

management
§  Fault-tolerance

Scalable Big-Data Programming

val	points	=	sc.textfile().cache()	
for	(i	<-	1	to	ITERATIONS)	{	
		val	gradient	=	points.map(p	=>	
				(1	/	(1	+	exp(-p.y*(w	dot	p.x)))		
				-	1)	*	p.y	*	p.x	
).reduce(_	+	_)	
		w	-=	gradient	
}	

Spark Driver Spark Master

Spark Worker

Spark Worker

8/9/16

22

43

Next-Generation DNA Sequencing

……

Fragmented into reads

Sequenced by chemical sequencer

Mapped by software aligner
INDEPENDENTLY

An individual’s genome samples

44

Ø  Processing billions of reads (strings) independently
§  Fit the MapReduce programming model perfectly
§ As for the long reference genome? Spark’s broadcast variables

Ø  Inside each read’s alignment process
§  Step #1: Seeding

•  Exact string matching
•  Linear time complexity

§  Step #2: Extending
•  Approximate string matching
•  The Smith-Waterman dynamic programming algorithm (Quadratic time complexity)
•  Accelerated by FPGAs

The Solution: Heterogeneous Cluster Computing

8/9/16

23

45

Straightforward Integration: 1+1 < 0.001

The Spark Program
§  CS-BWAMEM [HitSeq `15]
§  Aligning billions of short reads onto the

reference human genome in parallel

The Accelerator [FCCM `15]
§  A throughput-oriented FPGA accelerator

for the Smith-Waterman DP kernel

45

The Straightforward JNI Integration
§  CPU: 2.1 x 103 reads per second
§  FPGA: 1.6 reads per second

AXI Interconnect Bus

FIFO FIFO FIFO……..
P

E
1

PE Array M

Distributor
& Collector

B
R

A
M

P
E

2

P
E

N

P
E

1

PE Array 1

Distributor
& Collector

B
R

A
M

P
E

2

P
E

N

P
E

1

PE Array 2

Distributor
& Collector

B
R

A
M

P
E

2

P
E

N

Controller
distributor & collector Batched Task BRAM

�256 bits

�256 bits �256 bits �256 bits

�32 bits

�4 bits

On CPU

 One read
⇒ 24 DPs
⇒ 20 µs per DP
⇒ 2.1 x 103 reads/s

On FPGA

 One DP
⇒ 25 ms data

transfer
⇒ 1.6 reads/s

While JNI serves as a standard approach to connect JVMs with FPGAs,
a straightforward integration through JNI degrades the performance by 1000x.

46

Ø  Java Heap ó Native Memory

Ø  Host Memory ó Device Memory

What happened in a CPU-FPGA communication instance?

Host

Device

Data

8/9/16

24

47

Ø  Each map function is likely to
process only a small volume of
data with a small amount of
execution time

§ One read is only 101 ASCII characters
§ One line of a text file
§ One record of a NoSQL table
§ …

Ø  Communication overhead can
be amortized by batch
processing

Why communication matters?
def map_func(input:U):V = {
 // U => P => Q => V
 t1:P = cnv1(input)
 t2:Q = cnv2(t1)
 t3:V = cnv3(t2)
 t3
}
rdd_out = rdd_in.map(ele=>map_func(ele))

def map_func(input:Array[U]):Array[V] = {
 // Array[U] => … => Array[V]
 t1:Array[P] = cnv1_batch(input)
 t2:Array[Q] = cnv2_batch(t1)
 t3:Array[V] = cnv3_batch(t2)
 t3
}
rdd_out = rdd_in.map(ele=>map_func(ele))

48

Let’s first do batch processing manually

CPU: 2.1

FPGA: 7.8

Read #3

Read #4

Read #5

Read #6

Read #2

Read #1

Batch
#1

Batch
#8

Batch
#4

Batch
#3

Batch
#6

Batch
#7

Batch
#2

Batch
#5

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#1

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#5

S-W
#6

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#5

S-W
#6

S-W
#1

S-W
#2

S-W
#3

S-W
#1

S-W
#2

S-W
#3

S-W
#1

S-W
#2

S-W
#3

S-W
#4

S-W
#5

S-W
#6

S-W
#7

S-W
#8

S-W Batch

R
e
a

d
 B

a
tc

h

Dependency Chain of a
read’s S-W Tasks

Dependency/Irregularity-Aware Batch Processing

8/9/16

25

49

Accelerator-as-a-Service

Client RM
AM

NM

NM

Container	

Container	

Accelerator	status	

GAM
NAM

NAM

FPGA	

GPU	

Global Accelerator Manager: accelerator-centric scheduling

Node Accelerator Manager:
local accelerator service management, JVM-to-ACC communication optimization

GAM

NAM

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

CPU: 137.0

FPGA: 362.5

50

Blaze Runtime System

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

Ø  A system providing Accelerator-as-a-Service
§  Provide a better programming model:

•  APIs for accelerator developers
◆  Easier to integrate into big-data workload, e.g. Spark and Hadoop

•  APIs for big-data application developers
◆  Requires no knowledge about accelerators

§  Provide an accelerator management runtime

•  Supports FPGAs and GPUs

8/9/16

26

51

Runtime Flow

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/

Ø  Accelerator Registration
§ Register accelerator service to

corresponding nodes

Ø  Job Accelerator Request
§ Use acc_id as label
§ GAM allocates containers to

corresponding nodes

Ø  Job execution
§ Adopts several optimization

techniques, e.g. Double-buffering,
caching

User Application

Global ACC Manager

Node ACC
Manager

FPGA

GPU

ACC

ACC Labels Containers

Container Info ACC Info

ACC Invoke,
Input data,
Output data

52

Falcon Computing Solutions, Inc.
http://www.falcon-computing.com

©Copyright 2016 Falcon Computing Solutions

User Applications in
MapReduce/Spark/Hadoop

+
Java/C/C++/OpenMP

Overall Computing Solutions

Kestrel

Runtime

ACC
Models

ACC

Customize &
Virtualize

ACC: accelerator

ACC Engines

The only solution of FPGA customization and
virtualization for Datacenter acceleration!

FCS

Libraries

Merlin

Compiler

8/9/16

27

53

Merlin Compiler

Source-to-source
Optimizations

Compiler

OpenCL Generation

OpenCL backend
(Altera/Xilinx)

C/C++ with pragmas

Optimized OpenCL

◆  C-based design flow

◆  OpenMP-like high-level
programming model

◆  Automatic optimizations for
productivity and QoR

◆  Same input for multi-vendors and
multi-platforms

©Copyright 2016 Falcon Computing Solutions

System executables

54

Sample Compilation Results
Design Merlin

Compiler
Initial

OpenCL
Manual Optimized

OpenCL
Blackschole 0.34ms 11ms NA
Denoise 0.08s 3.8s NA
LogisticRegr 94ms 3.7s 94ms
MatMult 0.8ms 1.9ms 0.8ms
NAMD 26ms 51ms 26ms
Normal 4ms 52ms 10ms
TwoNN 1.23s 1.70s NA
Average 1x 21x 1.3x

©Copyright 2016 Falcon Computing Solutions

8/9/16

28

55

Kestrel Runtime And Blaze

Runtime Virtualization Offline customization

Accelerated Applications
(Spark/MapReduce/C/Java)

Falcon
Accelerator Libraries

Falcon
Merlin Compiler

Falcon
Kestrel Runtime

Blaze

Customized Platform Support

Management tools

A
cc

el
er

at
or

s

56

Concluding Remarks
♦  New era of computing

§  Accelerator-centric computing
§  Need efficient support for customization and specialization

♦  Customization at all levels
§  Chip-level
§  Server node level
§  Data center level

♦  Data center level customization holds great promise
§  That’s where workload aggregates

♦  Software is the key
§  Programming models

●  Hadoop/MapReduce or SPARK (+ C/C++), OpenMP, OpenCL,, …
§  Compilation support
§  Runtime management

8/9/16

29

57

Acknowledgements – CDSC and C-FAR

Reinman
(UCLA)

Palsberg
(UCLA)

Sadayappan
(Ohio-State)

Sarkar
(Associate Dir)

(Rice)

Vese
(UCLA)

Potkonjak
(UCLA)

Aberle
(UCLA)

Baraniuk
(Rice)

Bui
(UCLA)

Cong (Director)
(UCLA)

Cheng
(UCSB)

Chang
(UCLA)

♦  Center for Domain-Specific Computing (CDSC) under the NSF Expeditions in
Computing Program and C-FAR Center under the STARnet Program

♦  CDSC faculty:

58

Postdocs, Graduate Students, and Collaborators	

Yuxin Wang
 (PKU)

Dr. Peng Zhang
(UCLA)

Wei Zuo
 (UIUC)

Bingjun Xiao
(UCLA)

Yi Zou
(UCLA)

Prof. Deming Chen
 (UIUC/ADSC)

Prof. Louis-Noël Pouchet
 (UCLA)

Hui Huang
(UCLA)

Muhuan Huang
(UCLA)

Dr. Peng Li
(UCLA)

Di Wu
 (UCLA)

Yuting Chen
(UCLA)

Hao Yu
(UCLA)

Zhenman Fang
(UCLA)

