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Challenge with Processor Design – Power Barrier 

Based on Fred Pollack (Intel) and Michael Taylor (UCSD) 

♦  Current solution: Parallelization 
♦  Again face serious challenge 
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Concerns: 
•  TOC 
•  Dark silicon 
•  … 
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CDSC Focus:  Customization and Specialization 

Based on Fred Pollack (Intel) and Michael Taylor (UCSD) 

Adapt the architecture to  
application domain 
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Overview of Our Approach -- Customized Computing with 
Accelerator-Rich Architectures 

◆ Extensive use of dedicated and composable accelerators 
§  Most computations are carried on accelerators – not on processors! 

◆  A fundamental departure from von Neumann architecture 

◆  Why now? 
§  Previous architectures are device/transistor limited 
§  Von Neumann architecture allows maximum device reuse 

•  One pipeline serves all functions, fully utilized 

◆  Future architectures 
§  Plenty of transistors, but power/energy limited  (dark silicon) 
§  Customization and specialization for maximum energy efficiency 

◆  A story of specialization 

Lessons from Nature:   
Human Brain and Advance of Civilization  
♦  High power efficiency (20W) of human brain comes from specialization 

§  Different region responsible for different functions 
♦  Remarkable advancement of civilization also from specialization 

§  More advanced societies have higher degree of specialization 
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Intel’s $16.7B Acquisition of Altera 

Ø  Intel CEO Brian Krzanich noted, “The acquisition will couple Intel’s 
leading-edge products and manufacturing process with Altera’s 
leading field-programmable gate array (or FPGA) technology.” He 
further stated, “The combination is expected to enable new classes 
of products that meet customer needs in the data center and 
Internet of Things market segments.” 

FALCON CONFIDENTIAL 7 

Levels of Customization 

◆ Single-chip level 
§ Require new processor designs, e.g. using composable 

accelerators [ISLPED’ 12, DAC’14] 

◆ Server node level 
§ Host CPU + FPGA via PCI-e or QPI connections 

◆ Data center level 
§ Clusters of heterogeneous computing nodes 
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Composable Accelerators with Programmable 
Fabrics [ISLPED’2013] 
 

Dynamic Resource 
Allocation of ABBs 

♦  Enhancement [ISLPED 2013]:  with 20% of the chip area dedicated to 
programmable fabric, we can achieve more: 
§  Flexibility: An average 8.2x (up to 146x) speedup in other domains, such as 

commercial, vision and navigation 
§  Longevity: 22x speedup on a new application within the medical imaging domain 

Levels of Customization 

◆ Single-chip level 
§ Require new processor designs, e.g. using composable 

accelerators [ISLPED’ 12, DAC’14] 

◆ Server node level 
§ Host CPU + FPGA via PCI-e or QPI connections 

◆ Data center level 
§ Clusters of heterogeneous computing nodes 
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1. Initial Scan 
(low-dose CT scan) 

2. Image 
Reconstruction 
 

3. Automated 
Detection  

4. Adaptive Diagnostic Scan 
 
If nodules are detected, a diagnostic 
follow-up scan is performed during the 
same visit.  

5. Clinical 
Interpretation 

If no nodules are seen on 
the low-dose CT study, 

the patient can go home 
without any further 
imaging required. 

A Success Application: Low-Dose Adaptive CT Scan 

5 Years of Accelerating Medical Image Processing 
2010 2013 2015 (Today) 

CT image 
reconstruction 

18 hours 
Single thread CPU 

20 minutes 
FPGA acceleration on Convey 

6 minutes 
4 Virtex-6 FPGAs on Convey w/data reuse 

Denoising 5 minutes 
Single thread CPU 

15 seconds 
NVidia GPU, stencils 

3 seconds 
Core i7 Haswell, OpenMP, stencils 

Registration 10 minutes 
Single thread CPU 

2 minutes 
NVidia GPU, stencils 

30 seconds 
Core i7 Haswell, OpenMP, stencils 

Segmentation 20 minutes 
Single thread CPU 

4 minutes 
Multithread CPU 

1 minute 
Core i7 Haswell, OpenMP, stencils 

Analysis 45 minutes 
Single thread CPU 

18 minutes 
Multithread CPU 

5 minutes* 
Core i7 Haswell, OpenMP 
*  New detection method w/improved 

accuracy 

Workstation CPU, GPU, 
FPGA 
platform 

FPGA, CPU 
platform 

2010 
18 hours 
Single thread CPU 

5 minutes 
Single thread CPU 

10 minutes 
Single thread CPU 

20 minutes 
Single thread CPU 

45 minutes 
Single thread CPU 

2013 
20 minutes 
FPGA acceleration on Convey 
15 seconds 
NVidia GPU 

2 minutes 
NVidia GPU 

4 minutes 
Multithread CPU 

18 minutes 
Multithread CPU 

2015 (Today) 
6 minutes 
4 Virtex-6 FPGAs on Convey w/data reuse 

3 seconds 
Core i7 Haswell, OpenMP, stencils 

30 seconds 
Core i7 Haswell, OpenMP, stencils 

1 minute 
Core i7 Haswell, OpenMP, stencils 

5 minutes* 
Core i7 Haswell, OpenMP 
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Intel® 
Xeon® 
Processor Intel® 

Memory 
Controller 
Hub (MCH) 

Intel® I/O 
Subsystem Memory Memory 

Application 
Engine Hub 
(AEH) 

Application Engines 
(AEs) 

Direct 
Data 
Port 

“Commodity” Intel Server Convey FPGA-based coprocessor 

Standard Intel® x86-64 
Server 
 x86-64 Linux 

Convey coprocessor 
 FPGA-based 
 Shared cache-coherent memory 

Xeon Quad Core LV5408 
40W TDP 

XC6vlx760 FPGAs 
80GB/s off-chip bandwidth 
94W Design Power 

Example of CDSC Heterogeneous Computing Server 

13 

14 

More CPU-FPGA Platforms  

14 
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Levels of Customization 

n Single-chip level 
§ Require new processor designs, e.g. using composable 

accelerators [ISLPED’ 12, DAC’14] 

n Server node level 
§ Host CPU + FPGA via PCI-e or QPI connections [DAC’16] 

n Data center level 
§ Clusters of heterogeneous computing nodes [DAC’16] 
§ How about programming at data center level? [HotCloud’16] 

16 

Data Center Energy Consumption is a Big Deal 

In 2013, U.S. data centers consumed an estimated 91 
billion kilowatt-hours of electricity, projected to increase to 
roughly 140 billion kilowatt-hours annually by 2020 
 
•  50 large power plants (500-megawatt coal-fired) 
•  $13 billion annually  
•  100 million metric tons of carbon pollution per year. 
 

 https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-
amounts-energy) 
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◆ Understand the scale-out workloads 
§  ISCA’10, ASPLOS’12 
§ Mismatch between workloads and processor designs; 
§ Modern processors are over-provisioning  

◆ Trade-off of big-core vs. small-core 
§  ISCA’10: Web-search on small-core with better energy-efficiency 
§ Baidu taps Mavell for ARM storage server SoC 

Extensive Efforts on Improving Datacenter 
Energy Efficiency 

18 A. Putnam, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA’2014 

Datacenter Level Integration at Microsoft 

FPGA FPGA 
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n Evaluation of different integration options of 
heterogeneous technologies in datacenters 

n Efficient programming support for heterogeneous 
datacenters 

Focus of Our Study 

20 

Small-core on Compute-intensive Workloads 
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◆  Data set 
§  MNIST 700K Samples 
§  784 Features, 10 Labels 

◆  Benchmarks (MLLib) 
§  LR: logistic regression 
§  KM: k-mean clustering 

◆  Results 
§  Normalized to reference Xeon 

performance 

◆ Baselines 
§  Xeon: Intel E5 2620 

12 Core CPU 2.40GHz 
§  Atom: Intel D2500 1.8GHz 
§  ARM: A9 in Zynq 800MHz 

◆  Power consumption 
(averaged) 
§  Xeon: 175W/node 
§  Atom: 30W/node 
§  ARM: 10W/node (embedded )	
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Small Cores Alone Are Not Efficient! 

22 

Small Core + ACC: FARM 

- 8 Xilinx ZC706 boards 
- 24-port Ethernet switch 
- ~100W power 

◆ Boost Small-core Performance with FPGA 
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Small-core with FPGA Performance 
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◆  Setup 
§  Data set 

•  MNIST 700K Samples 
•  784 Features, 10 Labels 

§  Power consumption (averaged) 
•  Atom: 30W/node 
•  ARM: 10W/node	

◆  Results 
§  Normalized to reference Xeon 

performance 

24 

Small Cores + FPGAs Are More Interesting! 
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◆ Slower core and memory clock 
§  Task scheduling is slow 
§  JVM-to-FPGA data transfer is slow 

◆ Limited DRAM size and Ethernet bandwidth 
§ Slow data shuffling between nodes 
 

◆ Another option: Big-core + FPGA 

 

Inefficiencies in Small-core 

26 

22 workers 

1 master / 
driver 

Each node: 
1.  Two Xeon processors 
2.  One FPGA PCIe card 

(Alpha Data) 
3.  64 GB RAM 
4.  10GBE NIC 

Alpha Data board: 
1.  Virtex-7 FPGA 
2.  16GB on-board 

RAM 

1 file server 

1 10GbE switch 

◆ A 24-node cluster with FPGA-based accelerators 
§ Run on top of Spark and Hadoop (HDFS) 

Big-Core + ACC: CDSC FPGA-Enabled Cluster 
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◆ Experimental setup 
§ Data set 

•  MNIST 700K Samples 
•  784 Features, 10 Labels 

◆ Results 
§ Normalized to reference 

Xeon performance 

Experimental Results 
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◆ Based on two machine learning workloads 
§ Normalized performance (speedup), and energy efficiency 

(performance/W) relative to big-core solutions 

Overall Evaluation Results 

Performance Energy-
Efficiency 

Big-Core+FPGA Best | 2.5 Best | 2.6 
Small-Core+FPGA Better | 1.2 Best | 1.9 

Big-Core Good | 1.0 Good | 1.0 
Small-Core Bad | 0.25 Bad | 0.24 
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How to Program Such “Beasts”? 
 

--  “Write Once, Accelerate Anywhere” 

30 

C/C++ Based Synthesis for Accelerator Design   
xPilot (UCLA 2016) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx 2011-) 

♦  Platform-based C to RTL 
synthesis 

♦  Synthesize pure ANSI-C and C+
+, GCC-compatible compilation 
flow  

♦  Full support of IEEE-754 
floating point data types & 
operations 

♦  Efficiently handle bit-accurate 
fixed-point arithmetic 

♦  SDC-based scheduling 
♦  Automatic memory partitioning  
♦  … 
QoR matches or exceeds manual 
RTL  for many designs 

C/C++/SystemC 

Timing/Power/Layout  
Constraints 

RTL HDLs & 
RTL SystemC 

Platform  
Characterization  

Library 

FPGA 
or ASIC blocks 

= 

Sim
ulation, Verification, and Prototyping 

Compilation &  
Elaboration 

Code transformation & opt 

Behavioral & Communication 
Synthesis and Optimizations 

AutoPilotTM 

C
om

m
on  Testbench 

User Constraints 

ESL Synthesis 

Design Specification 

Developed by AutoESL, acquired by Xilinx in Jan. 2011 
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Toplevel Block Diagram

H
Matrix

multiply
Matrix

multiplyQRD Back
Subst.

4x4 Matrix Inverse Norm
Search/
Reorder

4x4

Matrix
multiply

Matrix
multiplyQRD Back

Subst.

3x3 Matrix Inverse Norm
Search/
Reorder

3x3

Matrix
multiply

Matrix
multiplyQRD Back

Subst.

2x2 Matrix Inverse Norm
Search/
Reorder

2x2

8x8 RVD
QRD

Tree Search Sphere Detector
Stage 1 Stage 8

Min
Search…

AutoPilot Results: Sphere Decoder (from Xilinx) 

Metric	 RTL 
Expert 

AutoPilot 
Expert 
	

Diff 
(%)	

LUTs 32,708 29,060 -11% 

Register
s 

44,885 31,000 -31% 

DSP48s 225 201 -11% 

BRAMs 128 99 -26% 

•  Wireless MIMO Sphere 
Decoder 

–  ~4000 lines of C code 
–  Xilinx Virtex-5 at 225MHz 

•  Compared to optimized IP  
–  11-31% better resource 

usage  

TCAD April 2011 (keynote paper) 
“High-Level Synthesis for FPGAs: From 
Prototyping to Deployment” 

© Copyright 2016 Xilinx 
. 
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SDAccel	Development	Environment	

Host	
Code	

Kernel 
Code 

CAPI / PCIe FPGA	

DDR	memory	

OpenCL	
binary		

container	

OpenCL 
Runtime  
Library 

Host	code 		
– OpenCL	APIs	
– C	/	C++	

Kernel	code	
– OpenCL	kernel	
code	

– C/C++		
– RTL	IP	
– 3rd	party	library	
code	

Chip 
Interco
nnect 

Core Core Core 

L2 L2 L2 

L2 L2 L2 L3 
Bank 

L3 
Bank 

L3 
Bank 

L3 
Bank 

L3 
Bank 

L3 
Bank 

Core Core Core 

M
em

ory B
us 

SM
P Interconnect SMP 

C
API 

PCIe 
SMP 

POWER8 

SDAccel supports 
OpenCL 1.0 Embedded 

Profile 
with some 1.2 / 2.0 

features 
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Design Complexity Can Still be High – Example: 
Medical Image Processing Pipeline 

3-D images 

•  HW or SW ? 

•  Implementation options ? 

•  Duplication ? 

•  System performance? 

•  Data prefetching ? 

•  Data reuse ? 

•  Buffer size vs. bandwidth ? 

•  On-chip memory throughput ? 

Denoise 
Registration  

Segmentation 

•  Streaming vs. shared ? 

•  FIFO vs. switching buffer? 

•  Sync. granularity ? 

•  Address mapping ? 

Retargetable	and	opCmized	
OpenCL	source	code	

CMOST: Fully Automated Compilation and Mapping Flow 
[DAC 2015] 

ApplicaCon:	C/C++/OpenMP4.0	 User	DirecCves	

Task	graph	

hardware	
model	

design	analysis/impl.	report	

design	parameters	

OpenCL	

PlaNorm	Spec.	

Pr
og

ra
m
	A
na

ly
si
s	

System	Op7miza7on	

System	Genera7on	

Module templates, 
System IP templates 

(C/RTL) 

On-board		
executable	HW/SW	
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Recent Research  - Optimizations Beyond HLS	

Program Analysis	

Input Code(C/C++) 

Loop 
Restructuring	

Code Generation	

Array Partitioning	

Loop Structure 
Optimization	

Data Layout 
Optimization	

Module Selection/
replication 

Communication 
Optimization 
Module-level 
Scheduling	

Inter-Module 
Optimization	

Data Reuse	

Improving Polyhedral  Code Generation 
for High-Level Synthesis CODES-ISSS’14 
Best Paper Award	

Theory and Algorithm for Generalized 
Memory Partitioning in High-Level 
Synthesis, FPGA’14	

Combining Computation with 
Communication Optimization in System 
Synthesis for Streaming Applications, 
FPGA’14	

Polyhedral-Based  Data Reuse 
Optimization for Configurable Computing 
FPGA’13 Best Paper Award	

An optimal microarchitecture for stencil 
computation acceleration based on non-
uniform partitioning of data reuse buffers 
(DAC’14)	

mapping	1	

Example: Throughput-Driven Task Scheduling and 
Mapping [FPGA’2014] 

mapping	0	 mapping	2	

…	

Throughput	

Best	soluCon	
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Motivation 

n Which implementation to use for each module? 
§ Memory partitioned v.s. non-memory-partitioned 

tile 3 
denoise0 tile 2 

denoise0 tile 1 
denoise0 tile 0 

gradient 

tile 3 
denoise0 tile 2 

denoise0 tile 1 
denoise0 

Tile size: 32x32 
Image:     64x64, 4 tiles 

tile 0 
rician 

BRAM DSP FF LUT 
non-partitioned gradient 128 21 2511 2125 

partitioned gradient 176 56 7147 7262 
partitioned rician 128 22 4692 3991 

non-partitioned rician 176 88 14475 15537 

38 

Motivation 

n  How many number of replicas? 

n  Scheduling and Communication cost (number of tiles in the communication 
channel)? 

tile 3 
denoise0 tile 2 

denoise0 tile 1 
denoise0 tile 0 

gradient 

tile 3 
denoise0 tile 2 

denoise0 tile 1 
denoise0 

Tile size: 32x32 
Image:     64x64, 4 tiles 

tile 0 
rician 

tile 3 

denoise0 tile 2 

denoise0 tile 1 

denoise0 tile 0 

gradient 

tile 3 

denoise0 tile 2 

denoise0 tile 1 

denoise0 tile 0 

rician 

tile 3 
denoise0 tile 2 

denoise0 tile 1 
denoise0 tile 0 

gradient 

tile 3 
denoise0 tile 2 

denoise0 tile 1 
denoise0 tile 0 
rician 

scheduling 0 à1 tile scheduling 0 à2 tiles 
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A Rich Design Space: System-Level Synthesis 
with HLS for Streaming Applications 
 

Module	
Selec>on	

Module	
Replica>on	

Communica>on	
Op>miza>on	

Which	implementa>on	
choice	to	use?	

=	 ?	

Module	

System	

+ +	 …

Number	of	replicas?		
–	Explore	data	parallelism	

What	is	the	minimum	buffer	size?	
–Producer/Consumer	data	rate	
matching	problem	

How	to	schedule	all	the	
modules?	

Scheduling	

A	 B	

cycles	

40 

Experiments on Example Denoise 
n  Our methodology: ST-Syn 

§  computation & communication co-optimization 

n  Separate: 
§  separate computation opt. + communication opt. 

n  à Communication and computation should be considered in a unified 
framework 

Average area 
reduction: 47% 
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More is Needed for  
Data Center Level Deployment  

42 

n Simplified programming 
models 
§ MapReduce, Dataflow 

n User-transparent Runtime 
§ Distributed computing 
§ Scheduling and resource 

management 
§  Fault-tolerance 

Scalable Big-Data Programming 

val	points	=	sc.textfile().cache()	
for	(i	<-	1	to	ITERATIONS)	{	
		val	gradient	=	points.map(p	=>	
				(1	/	(1	+	exp(-p.y*(w	dot	p.x)))		
				-	1)	*	p.y	*	p.x	
				).reduce(_	+	_)	
		w	-=	gradient	
}	

Spark Driver Spark Master 

Spark Worker 

Spark Worker 
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Next-Generation DNA Sequencing 

…… 

Fragmented into reads 

Sequenced by chemical sequencer  

Mapped by software aligner 
INDEPENDENTLY  

An individual’s genome samples 

44 

Ø  Processing billions of reads (strings) independently 
§  Fit the MapReduce programming model perfectly 
§ As for the long reference genome? Spark’s broadcast variables  

Ø  Inside each read’s alignment process 
§  Step #1: Seeding 

•  Exact string matching 
•  Linear time complexity 

§  Step #2: Extending 
•  Approximate string matching 
•  The Smith-Waterman dynamic programming algorithm (Quadratic time complexity) 
•  Accelerated by FPGAs 

The Solution: Heterogeneous Cluster Computing 
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Straightforward Integration: 1+1 < 0.001 

The Spark Program 
§  CS-BWAMEM [HitSeq `15] 
§  Aligning billions of short reads onto the 

reference human genome in parallel 

The Accelerator [FCCM `15] 
§  A throughput-oriented FPGA accelerator 

for the Smith-Waterman DP kernel 

45 

The Straightforward JNI Integration 
§  CPU: 2.1 x 103 reads per second 
§  FPGA: 1.6 reads per second 

AXI Interconnect Bus

FIFO FIFO FIFO……..
P

E
1

PE Array M

Distributor 
& Collector

B
R

A
M

P
E

2

P
E

N

P
E

1

PE Array 1

Distributor 
& Collector

B
R

A
M

P
E

2

P
E

N

P
E

1

PE Array 2

Distributor 
& Collector

B
R

A
M

P
E

2

P
E

N

Controller 
distributor & collector Batched Task BRAM

�256 bits

�256 bits �256 bits �256 bits

�32 bits

�4 bits

On CPU 
     

    One read 
⇒ 24 DPs 
⇒ 20 µs per DP 
⇒ 2.1 x 103 reads/s 

On FPGA 
     

    One DP 
⇒ 25 ms data 

transfer 
⇒ 1.6 reads/s 

While JNI serves as a standard approach to connect JVMs with FPGAs, 
a straightforward integration through JNI degrades the performance by 1000x.  

46 

Ø  Java Heap ó Native Memory 

Ø  Host Memory ó Device Memory 

What happened in a CPU-FPGA communication instance? 

Host 
 
 
 
 
 
 

Device 
 
 
 
 
 
 

Data
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Ø  Each map function is likely to 
process only a small volume of 
data with a small amount of 
execution time 

§ One read is only 101 ASCII characters 
§ One line of a text file 
§ One record of a NoSQL table 
§ … 

Ø  Communication overhead can 
be amortized by batch 
processing 

Why communication matters? 
def map_func(input:U):V = { 
  // U => P => Q => V 
  t1:P = cnv1(input) 
  t2:Q = cnv2(t1) 
  t3:V = cnv3(t2) 
  t3 
} 
rdd_out = rdd_in.map(ele=>map_func(ele)) 

def map_func(input:Array[U]):Array[V] = { 
  // Array[U] => … => Array[V] 
  t1:Array[P] = cnv1_batch(input) 
  t2:Array[Q] = cnv2_batch(t1) 
  t3:Array[V] = cnv3_batch(t2) 
  t3 
} 
rdd_out = rdd_in.map(ele=>map_func(ele))  

48 

Let’s first do batch processing manually 

CPU: 2.1 

FPGA: 7.8 

Read #3

Read #4

Read #5

Read #6

Read #2

Read #1

Batch 
#1

Batch 
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#4

Batch 
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Dependency Chain of a 
read’s S-W Tasks 

Dependency/Irregularity-Aware Batch Processing 
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Accelerator-as-a-Service 

Client    RM 
AM 

NM 

NM 

Container	

Container	

Accelerator	status	

GAM 
NAM 

NAM 

FPGA	

GPU	

Global Accelerator Manager: accelerator-centric scheduling 
 
Node Accelerator Manager: 
local accelerator service management, JVM-to-ACC communication optimization  

GAM 

NAM 

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/ 

CPU: 137.0 

FPGA: 362.5 

50 

Blaze Runtime System 

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/ 

Ø  A system providing Accelerator-as-a-Service 
§  Provide a better programming model:   

•  APIs for accelerator developers 
◆  Easier to integrate into big-data workload, e.g. Spark and Hadoop 

•  APIs for big-data application developers 
◆  Requires no knowledge about accelerators 

§  Provide an accelerator management runtime 

•  Supports FPGAs and GPUs 
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Runtime Flow 

Source: https://spark-summit.org/2016/events/deploying-accelerators-at-datacenter-scale-using-spark/ 

Ø  Accelerator Registration 
§ Register accelerator service to 

corresponding nodes 

Ø  Job Accelerator Request 
§ Use acc_id as label 
§ GAM allocates containers to 

corresponding nodes 

Ø  Job execution 
§ Adopts several optimization 

techniques, e.g. Double-buffering, 
caching 

User Application 

Global ACC Manager 

Node ACC 
Manager 

FPGA 

GPU 

ACC 

ACC Labels Containers  

Container Info ACC Info 

ACC Invoke, 
Input data, 
Output data 
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Falcon Computing Solutions, Inc. 
http://www.falcon-computing.com 

©Copyright 2016 Falcon Computing Solutions 

User Applications in  
MapReduce/Spark/Hadoop  

+  
Java/C/C++/OpenMP 

Overall Computing Solutions 

Kestrel 

Runtime 

ACC 
Models 

ACC 

Customize & 
Virtualize 

ACC: accelerator 

ACC Engines 

The only solution of FPGA customization and 
virtualization for Datacenter acceleration! 

FCS 

Libraries 

Merlin 

Compiler 
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Merlin Compiler 

Source-to-source 
Optimizations 

Compiler 

OpenCL Generation 

OpenCL backend 
(Altera/Xilinx) 

C/C++ with pragmas 

Optimized OpenCL 

◆  C-based design flow  

◆  OpenMP-like high-level 
programming model 

◆  Automatic optimizations for 
productivity and QoR 

◆  Same input for multi-vendors and 
multi-platforms 

©Copyright 2016 Falcon Computing Solutions 

System executables 
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Sample Compilation Results 
Design Merlin 

Compiler 
Initial 

OpenCL 
Manual Optimized 

OpenCL 
Blackschole  0.34ms 11ms NA 
Denoise 0.08s 3.8s NA 
LogisticRegr 94ms 3.7s 94ms 
MatMult 0.8ms 1.9ms 0.8ms 
NAMD 26ms 51ms 26ms 
Normal  4ms 52ms 10ms 
TwoNN  1.23s 1.70s NA 
Average 1x 21x 1.3x 

©Copyright 2016 Falcon Computing Solutions 
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Kestrel Runtime And Blaze 

Runtime Virtualization Offline customization 

Accelerated Applications 
(Spark/MapReduce/C/Java) 

Falcon 
Accelerator Libraries 

Falcon 
Merlin Compiler 

Falcon 
Kestrel Runtime 

Blaze 

Customized Platform Support 

Management tools 

A
cc

el
er

at
or

s 
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Concluding Remarks 
♦  New era of computing 

§  Accelerator-centric computing 
§  Need efficient support for customization and specialization 

♦  Customization at all levels 
§  Chip-level 
§  Server node level 
§  Data center level 

♦  Data center level customization holds great promise 
§  That’s where workload aggregates 

♦  Software is the key 
§  Programming models 

●  Hadoop/MapReduce or SPARK (+ C/C++), OpenMP, OpenCL,, … 
§  Compilation support 
§  Runtime management 
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