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OUTLINES � 
•  Synchronization Problems for Concurrent Applications in 

VE  
•  Co-scheduling in VE and Its Problems 
•  Two schemes we proposed: 

•  Partial Co-scheduling 
•  Boost Co-scheduling 

•  Comparison between two schemes 

•  Experiments and Measurement Results 
•  Conclusions and Future Work 
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INTRODUCTION � 
•  Synchronization Problems for Concurrent Applications in 

Virtualized Environments 
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INTRODUCTION � 
•  Current existing work for Synchronization Problems 

(Intrusive & Non-intrusive Methods) 
•  Intrusive Methods 

(Actions based on the sematic detection) 
•  Lock-aware Delay Preemption (Uhlig2004) 

•  Spin Yield (Jiang2009) 

•  Active Waiting Prevention (Friebel2008) 

•  Non-intrusive Methods 
(Actions to keep the prerequisite in native environments) 

•  Co-Scheduling (Weng2009) 

•  Gang-Scheduling (Feitelson1994) 

•  In Intrusive Methods, Detection Algorithms or Modified Guest OS 
is necessary to discover the co-operations between VCPUs, 
which brings more complexity than Non-intrusive Methods. 



CO-SCHEDULING IN VE � 
•  Definition 

•  All the VCPUs that belong to a VM are scheduled 
simultaneously. 

•  Benefits 
•  Keeping the simultaneous online prerequisite in native 

environments. 
•  No semantic detection or modified guest OS requirement 
•  Orthogonal to underlying scheduler 

•  Current co-scheduling solutions 
•  Hybrid Co-scheduling (Weng2009) 

•  Co-de-scheduling (VMWare2008, Jiang2009) 

•  Task-aware Co-scheduling (Xu2009, Bai2010) 
•  Approximate Co-scheduling (Jiang2009) 



CO-SCHEDULING IN VE � 
•  Scenarios without or with Co-scheduling 
C. Weng, Z. Wang, M. Li, et al. The hybrid scheduling framework for virtual machine system, in VEE’09, 
pp. 111-120 
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CO-SCHEDULING IN VE � 
•  Problems in current Hybrid Co-scheduling 

•  When multiple concurrent VMs co-exists in system, Hybrid 
Co-scheduling performance degrades seriously. 

Execution time of LU with different 
scheduling schemes 

Coarse Space Granularity 
(Each co-scheduling is a global operation) 

Contention & Exclusiveness  
between multiple concurrent VMs 

Performance Degradation 



CO-SCHEDULING IN VE � 
•  Coarse & Fine Space Granularity in Co-scheduling 
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PARTIAL CO-SCHEDULING 
(PCS) � 
•  General Idea 

•  Sending the co-scheduling signal to indispensable CPUs 
instead of to all online CPUs 

•  Implementation Key Points 

•  Recording the co-scheduling state for each online CPU, 
not just for the whole system 

•  Recording the VCPU distribution throughout online CPUs 
for each VM 



PARTIAL CO-SCHEDULING 
(PCS) � 
•  Procedure in scheduler with PCS 
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BOOST CO-SCHEDULING 
(BCS) � 
•  General Idea 

•  Boost the priorities of co-scheduled VCPUs to induce the 
underlying scheduler to pick the appropriate VCPUs. 

•  Implement Key Points 

•  Introduce a new highest priority into the scheduler -- COS 
•  Boost the priorities of co-scheduled VCPUs temporarily 



BOOST CO-SCHEDULING 
(BCS) � 
•  Procedure in scheduler with BCS 

VCPU’s priority is 
COS? 

VCPU is in 
concurrent 
domain? 

Pick a next VCPU 

Schedule it 
Put its priority back 

Boost all VCPU’s priority in 
its VM to COS 

Schedule it 

Y N 

Y 

N 



COMPARISON  
BETWEEN PCS & BCS � 
PARTIAL  
CO-SCHEDULING 

•  Precise time edge 
alignment 

•  Complex 
implementation, More 
codes than hybrid co-
scheduling 

•  Perform well and 
stable in all kinds of 
concurrency 

BOOST 
CO-SCHEDULING 

•  Imprecise time edge 
alignment 

•  Easy implementation, 
Less code, Better 
reliability 

•  Fit most condition 
except cross domain 
concurrency 



EXPERIMENTS � 
•  Test bed 

•  Hardware:  
•  CPU: quad-core Core i5,  
•  Mem: 4GB DDR3 

•  Software: 
•  Xen 4.0.1 + Ubuntu 10.04 Server 

•  Virtual Machine: 
•  Dual-core CPU + 394MB Mem 
•  CentOS 5.5 

•  Benchmarks 
•  SPLASH2 LU kernel 

•  P=2, N=4096, B=16 
•  NPB: six benchmarks selected 

•  BT, CG, EP, FT, LU, MG (Class A & B) 



EXPERIMENTS � 
•  LU Experiment 

•  Execution time 
•  Co-scheduling frequency 
•  Time edge difference in 

BCS 

Execution Time (sec) 



EXPERIMENTS � 
•  LU Experiment 

Time Edge Difference in BCS 
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EXPERIMENTS � 
•  NPB Experiments 

•  Execution time 



CONCLUSIONS � 
•  We propose two optimization schemes of hybrid co-

scheduling for multiple concurrent VMs co-existing in VE 
•  PCS: Sending signals to co-scheduled VCPUs 
•  BCS: Induce scheduler via priority boosting 

•  Both PCS and BCS alleviate contention and exclusiveness 
between multiple VMs with finer space granularity 

•  Both PCS and BCS perform better in execution time and 
fairness than Hybrid Co-scheduling, especially when 
multiple concurrent VMs co-exist in system. 

•  Future Work: 

•  Remove the over-commit restriction of Co-scheduling 
•  Co-scheduling in AMP Virtualized System 



Thank You & 
Any Questions? 

Hybrid Co-scheduling Optimizations for Concurrent Applications in Virtualized 
Environments 
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