
Hybrid Co-scheduling Optimizations for Concurrent
Applications in Virtualized Environments �

Yulong Yu
School of Software
Dalian University of Technology

The 6th International Conference on Networking, Architecture, and Storage (NAS), July
28-30, 2011, Dalian, China

OUTLINES �
•  Synchronization Problems for Concurrent Applications in

VE
•  Co-scheduling in VE and Its Problems
•  Two schemes we proposed:

•  Partial Co-scheduling
•  Boost Co-scheduling

•  Comparison between two schemes

•  Experiments and Measurement Results
•  Conclusions and Future Work

INTRODUCTION �

Parallel & Concurrent
Applications

Virtualized
Environments

Virtualized
Environments

Parallel & Concurrent
Applications

INTRODUCTION �
•  Synchronization Problems for Concurrent Applications in

Virtualized Environments

Time

Non-lock
Operation

Lock
Holding

Busy Waiting

Preempted
in Lock Holding

Preempted

Lock
Holding

Preempted Lock
Holding

Lock
Released Preempted VCPU0

VCPU1

Lock Holder
Preemption

(Uhilg2004)

Lock Competitor
Blocking

(Bai2010)

INTRODUCTION �
•  Current existing work for Synchronization Problems

(Intrusive & Non-intrusive Methods)
•  Intrusive Methods

(Actions based on the sematic detection)
•  Lock-aware Delay Preemption (Uhlig2004)

•  Spin Yield (Jiang2009)

•  Active Waiting Prevention (Friebel2008)

•  Non-intrusive Methods
(Actions to keep the prerequisite in native environments)

•  Co-Scheduling (Weng2009)

•  Gang-Scheduling (Feitelson1994)

•  In Intrusive Methods, Detection Algorithms or Modified Guest OS
is necessary to discover the co-operations between VCPUs,
which brings more complexity than Non-intrusive Methods.

CO-SCHEDULING IN VE �
•  Definition

•  All the VCPUs that belong to a VM are scheduled
simultaneously.

•  Benefits
•  Keeping the simultaneous online prerequisite in native

environments.
•  No semantic detection or modified guest OS requirement
•  Orthogonal to underlying scheduler

•  Current co-scheduling solutions
•  Hybrid Co-scheduling (Weng2009)

•  Co-de-scheduling (VMWare2008, Jiang2009)

•  Task-aware Co-scheduling (Xu2009, Bai2010)
•  Approximate Co-scheduling (Jiang2009)

CO-SCHEDULING IN VE �
•  Scenarios without or with Co-scheduling
C. Weng, Z. Wang, M. Li, et al. The hybrid scheduling framework for virtual machine system, in VEE’09,
pp. 111-120

1

1

1

2

2

1

2

2

2

2 3

3

CPU3

CPU2

CPU1

CPU0

Time Slots

1

1

1

1

2

2

2

2

3

3

3

3 CPU3

CPU2

CPU1

CPU0

Time Slots

Non-co-scheduling Scenario Co-scheduling Scenario

CO-SCHEDULING IN VE �
•  Problems in current Hybrid Co-scheduling

•  When multiple concurrent VMs co-exists in system, Hybrid
Co-scheduling performance degrades seriously.

Execution time of LU with different
scheduling schemes

Coarse Space Granularity
(Each co-scheduling is a global operation)

Contention & Exclusiveness
between multiple concurrent VMs

Performance Degradation

CO-SCHEDULING IN VE �
•  Coarse & Fine Space Granularity in Co-scheduling

2 2 2

2 2 2

1 1 1 1

1 1 1 1 CPU3

CPU2

CPU1

CPU0

Time

2 2 2

2 2 2

1 1

1 1 CPU3

CPU2

CPU1

CPU0

Time

Simultaneous Co-Scheduling is enable Contention! Co-scheduling goes serially

Coarse Space Granularity Fine Space Granularity

Co-scheduling Gap Co-scheduling Co-scheduling Preempted

PARTIAL CO-SCHEDULING
(PCS) �
•  General Idea

•  Sending the co-scheduling signal to indispensable CPUs
instead of to all online CPUs

•  Implementation Key Points

•  Recording the co-scheduling state for each online CPU,
not just for the whole system

•  Recording the VCPU distribution throughout online CPUs
for each VM

PARTIAL CO-SCHEDULING
(PCS) �
•  Procedure in scheduler with PCS

In Co-scheduling?

Find out the co-scheduled
VCPU, and pick it as next VCPU is in

concurrent
domain?

Pick a next VCPU

Start Co-scheduling
Raise the scheduling signal to

indispensable CPUs

Scheduling with
underlying scheme

Y N

Y N

BOOST CO-SCHEDULING
(BCS) �
•  General Idea

•  Boost the priorities of co-scheduled VCPUs to induce the
underlying scheduler to pick the appropriate VCPUs.

•  Implement Key Points

•  Introduce a new highest priority into the scheduler -- COS
•  Boost the priorities of co-scheduled VCPUs temporarily

BOOST CO-SCHEDULING
(BCS) �
•  Procedure in scheduler with BCS

VCPU’s priority is
COS?

VCPU is in
concurrent
domain?

Pick a next VCPU

Schedule it
Put its priority back

Boost all VCPU’s priority in
its VM to COS

Schedule it

Y N

Y

N

COMPARISON
BETWEEN PCS & BCS �
PARTIAL
CO-SCHEDULING

•  Precise time edge
alignment

•  Complex
implementation, More
codes than hybrid co-
scheduling

•  Perform well and
stable in all kinds of
concurrency

BOOST
CO-SCHEDULING

•  Imprecise time edge
alignment

•  Easy implementation,
Less code, Better
reliability

•  Fit most condition
except cross domain
concurrency

EXPERIMENTS �
•  Test bed

•  Hardware:
•  CPU: quad-core Core i5,
•  Mem: 4GB DDR3

•  Software:
•  Xen 4.0.1 + Ubuntu 10.04 Server

•  Virtual Machine:
•  Dual-core CPU + 394MB Mem
•  CentOS 5.5

•  Benchmarks
•  SPLASH2 LU kernel

•  P=2, N=4096, B=16
•  NPB: six benchmarks selected

•  BT, CG, EP, FT, LU, MG (Class A & B)

EXPERIMENTS �
•  LU Experiment

•  Execution time
•  Co-scheduling frequency
•  Time edge difference in

BCS

Execution Time (sec)

EXPERIMENTS �
•  LU Experiment

Time Edge Difference in BCS

Co-scheduling Frequency

EXPERIMENTS �
•  NPB Experiments

•  Execution time

CONCLUSIONS �
•  We propose two optimization schemes of hybrid co-

scheduling for multiple concurrent VMs co-existing in VE
•  PCS: Sending signals to co-scheduled VCPUs
•  BCS: Induce scheduler via priority boosting

•  Both PCS and BCS alleviate contention and exclusiveness
between multiple VMs with finer space granularity

•  Both PCS and BCS perform better in execution time and
fairness than Hybrid Co-scheduling, especially when
multiple concurrent VMs co-exist in system.

•  Future Work:

•  Remove the over-commit restriction of Co-scheduling
•  Co-scheduling in AMP Virtualized System

Thank You &
Any Questions?

Hybrid Co-scheduling Optimizations for Concurrent Applications in Virtualized
Environments
Yulong Yu, Yuxin Wang, He Guo and Xubin He
Dalian University of Technology & Virginia Commonwealth University

REFERENCES �
(Only the references in this presentation)
V. Uhlig, J. LeVasseur, E. Skoglund, et al, “Towards scalable multiprocessor virtual machines,” in
Proceedings of the 3rd Virtual Machine Research and Technology Symposium, 2004, pp. 1–14.
T. Friebel and S. Biemueller. (2008) How to deal with lock holder preemption. [Online]. Available:
http://www.amd64.org/fileadmin/user upload/pub/2008-Friebel-LHP-GI OS.pdf
W. Jiang, Y. Zhou, Y. Cui, et al, “CFS optimizations to KVM threads on multi-core environment,” in
International Conference on Parallel and Distributed Systems, 2009, pp. 348–354.
C. Weng, Z. Wang, M. Li, et al, “The hybrid scheduling framework for virtual machine system,” in
Virtual Execution Environments, 2009, pp. 111–120.
D.G. Feitelson and L. Rudolph, “Gang scheduling performance benefits for fine-grain
synchronization,” Journal of Parallel and Distributed Computing, vol. 16, no. 1, pp. 306–318, 1992.
VMWare Communities. (2008) Co-scheduling smp vms in vmware esx server. [Online]. Available:
http://communities.vmware.com/docs/DOC-4960
C. Xu, Y. Bai and C. Luo, “Performance evaluation of parallel programming in virtual machine
environment,” in International Conference on Network and Parallel Computing, 2009, pp. 140–147.

Y. Bai, C. Xu and Z. Li, “Task-aware based co-scheduling for virtual machine system,” in Symposium
On Applied Computing, 2010, pp. 181–188.

V. Kazempour, A. Kamali and A. Fedorova, “AASH: an asymmetry-aware scheduler for hypervisor,” in
Virtual Execution Environments, 2010, pp. 85–96.

ACKNOWLEDGEMENT �
This work is partially supported by the Sea Sky Scholar fund of
the Dalian University of Technology.

The author He’s research is sponsored in part by National
Science Foundation grant CCF-1102624.

 Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

