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Background

Increased need for high-performance storage I/O

1. Larger file-set sizes ⇒ more I/O time
2. Server virtualization and consolidation ⇒ more I/O pressure

SSDs can mitigate I/O penalties

SSD HDD

Throughput (R/W) (MB/s) 277/202 100/90

Response time (ms) 0.17 12.6

IOPS (R/W) 30,000/3,500 150/150

Price/capacity ($/GB) $3 $0.3

Capacity per device 32 – 120 GB Up to 3TB

Mixed SSD and HDD environments are necessary

Cost-effectiveness: deploy SSDs as HDDs caches
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Previous Work

Web servers as a secondary file cache [Kgil et al., 2006 ]

B Requires application knowledge and intervention

Readyboost feature in Windows

B Static file preloading
B Requires user interaction

bcache module in the Linux Kernel

B Has no admission control

NetApp’s Performance Acceleration Module

B Needs specialized hardware
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Our goal

Design Azor, a transparent SSD cache

B Move SSD caching to block-level
B Hide the address space of SSDs

Thorough analysis of design parameters

1. Dynamic differentiation of blocks
2. Cache associativity
3. I/O concurrency
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Writeback Cache Design Issues

1. Requires synchronous metadata updates for write I/Os,

HDDs may not have the up-to-date blocks
Must know the location of each block in case of failure

2. Reduces system resilience to failures,

A failing SSD results in data loss
SSDs are hidden, so other layers can’t handle these failures

B Our write-through design avoids these issues
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Dynamic block differentiation

Blocks are not equally important to performance

B Makes sense to differentiate during admission to SSD cache

Introduce a 2-Level Block Selection scheme (2LBS)

First level: Prioritize filesystem metadata over data

B Many more small files → more FS metadata
B Additional FS metadata introduced for data protection
B Cannot rely on DRAM for effective metadata caching
B Metadata requests represent 50% – 80% of total I/O accesses ?

Second level: Prioritize between data blocks

B Some data are accessed more frequently
B Some data are used for faster accesses to other data

? D. Roselli and T. E. Anderson, ”A comparison of file system workloads”, Usenix ATC 2000
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Two-level Block Selection

Modify XFS filesystem to tag FS metadata requests

B Transparent metadata detection also possible

Keep in DRAM an estimate of each HDD block’s accesses

B Static allocation: 256 MB DRAM required per TB of HDDs
B DRAM space required is amortized with better performance
B Dynamic allocation of counters reduces DRAM footprint
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Cache Associativity

Associativity: performance and metadata footprint tradeoff

Higher-way associativities need more DRAM space for metadata

Direct-Mapped cache

B Minimizes metadata requirements
B Suffers from conflict misses

Fully-Set-Associative cache

B 4.7× more metadata than the direct-mapped cache
B Proper choice of replacement policy is important
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Cache Associativity - Replacement policy

Large variety of replacement algorithms used in CPUs/DRAM

B Prohibitively expensive in terms of metadata size
B Assume knowledge of the workload I/O patterns
B May cause up to 40% performance variance

We choose the LRU replacement policy

B Good reference point for more sophisticated policies
B Reasonable choice since buffer-cache uses LRU
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I/O Concurrency

A high degree of I/O concurrency:

B Allows overlapping I/O with computation

B Effectively hides I/O latency

1 Allow concurrent read accesses on the same cache line

B Track only pending I/O requests
B Reader-writer locks per cache line are prohibitevely expensive

2 Hide SSD write I/Os of read misses

B Copy the filled buffers to a new request
B Introduces a memory copy
B Must maintain state of pending I/Os
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Experimental Setup

Dual socket, quad core Intel Xeon 5400 (64-bit)

Twelve 500GB SATA-II disks with write-through caching

Areca 1680D-IX-12 SAS/SATA RAID storage controller

Four 32GB Intel SLC SSDs (NAND Flash)

HDDs and SSDs on RAID-0 setup, 64KB chunks

Centos 5.5 OS, kernel version 2.6.18-194

XFS filesystem

64GB DRAM, varied by experiment
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Benchmarks

I/O intensive workloads, between hours to days for each run

Type Properties File Set RAM SSD Cache
sizes (GB)

TPC-H Data
warehouse

Read only 28GB 4GB 7,14,28

SPECsfs CIFS File-
server

write-dominated,
latency-sensitive

Up to
2TB

32GB 128

TPC-C OLTP
workload

highly-
concurrent

155GB 4GB 77.5
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Experimental Questions

Which is the best static decision for handling I/O misses?

Does dynamically differentiating blocks improve performance?

How does cache associativity impact performance?

Can our design options cope with a ”black box” workload?
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Static decision for I/O misses (SPECsfs2008)
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11% to 66% better performance than HDDs

Huge file set, only 30% accessed

B write-hdd-ssd policy evicts useful blocks

Up to 5000 CIFS ops/sec difference for the same latency
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Differentiating filesystem metadata (SPECsfs2008)

FS metadata continuously increase during execution
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Metadata DRAM misses ⇒ up to 71% impact

DRAM data hit ratio less than 5%

3,000 more CIFS ops/sec between HDDs and Azor

∼23% latency reduction when using 2LBS in Azor
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Differentiating filesystem data blocks (TPC-H)

Filesystem data like indices important for databases
Data differentiation improves performance
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1.95× and 1.53× improvement for DM and FA caches
Medium size DM is 20% better than large size DM
→ With 10% less hit ratio
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Importance of cache associativity (TPC-H)
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FA better than DM for all cache sizes
B Large size FA = 1.36× better than DM counterpart
B Up to 15% less conflict misses than DM
B Medium size FA 32% better than large size DM
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A black box workload (TPC-C)

We choose the best parameters found so far

B Fully-set-associative cache design
B SSD cache size of half the workload size

Cache Policy
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Base cache: 55% improvement to native

2LBS cache: 34% additional improvement

Hit ratio remains the same in both versions

Disk utilization is 100%, SSD utilization under 7%
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Conclusions

We use SSD-based I/O caches to increase storage performance

Performance is improved with higher way associativities

B At the cost of 4.7× higher metadata footprint

We explore differentiation of HDD blocks

B According to their expected importance on system performance
B Design and evaluation of a two-level block selection scheme

Overall, our work shows that differentiation of blocks is a
promising technique for improving SSD-based I/O caches

B Reduces latency and improves throughput
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Thank You!

Meet the real Azor! ¨̂
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