
Towards Scalable Application Checkpointing with
Parallel File System Delegation

Dulcardo Arteaga Ming Zhao
darte003@fiu.edu ming@cs.fiu.edu

School of Computing and Information Sciences
Florida International University

Miami, FL

High Performance Computing Systems

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 1 / 25

Introduction

� Scalability

• Large scale applications run on HPC
• One important challenge is Fault Tolerance
• Common approach is checkpointing

� Checkpointing

• Store a snapshot of the current application state
• Applications recover from valid snapshot in case of failure

� HPC systems use parallel file system to do checkpointing

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 2 / 25

Parallel File Systems (PFSes)

� Components:

Meta Data Servers

Store metadata information
about files

Data Servers

Store actual data of files

Clients

Run on compute nodes and
provide interface to Storage
System

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 3 / 25

Problem Statement

Problem

Large scale checkpointing causes serious
bottleneck at metadata servers on HPC
systems

Approach

Delegate the management of the PFS storage
space used for checkpointing to applications to
reduce metadata overhead

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 4 / 25

Outline

1 Introduction

2 Checkpointing Modes

3 Approach

4 Experimental Evaluation

5 Conclusion

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 5 / 25

Checkpointing Modes
File-per-Process

� File-per-Process (N-N)

• Every process writes to a
different file

� Metadata management
overhead

• Imply a creation of many
files

• Metadata operation per
file and per process

N1

P1 P2

N2

P3 P4

N3

P5 P6

(N-N)

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 6 / 25

Checkpointing Modes
Shared-File

N1

P1 P2

N2

P3 P4

N3

P5 P6

(N-1 Segmented)
N1

P1 P2

N2

P3 P4

N3

P5 P6

(N-1 Strided)

� Shared-File (N-1) segmented

• Processes write sequentially
on shared-file’s region

� Shared-File (N-1) strided

• Processes write to different
part of shared-file

� Metadata management
overhead

• Every process requests same
metadata every time

• File locking

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 7 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

1 Create reserved space
(only one time)

2 Receive metadata of
reserved space (only
one time)

3 Perform I/O directly
to data servers

Read and write
from/to
checkpoints require
to follow only step
3 after reserved
space is created

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

1 Create reserved space
(only one time)

2 Receive metadata of
reserved space (only
one time)

3 Perform I/O directly
to data servers

Read and write
from/to
checkpoints require
to follow only step
3 after reserved
space is created

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

1 Create reserved space
(only one time)

2 Receive metadata of
reserved space (only
one time)

3 Perform I/O directly
to data servers

Read and write
from/to
checkpoints require
to follow only step
3 after reserved
space is created

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

1 Create reserved space
(only one time)

2 Receive metadata of
reserved space (only
one time)

3 Perform I/O directly
to data servers

Read and write
from/to
checkpoints require
to follow only step
3 after reserved
space is created

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

1 Create reserved space
(only one time)

2 Receive metadata of
reserved space (only
one time)

3 Perform I/O directly
to data servers

Read and write
from/to
checkpoints require
to follow only step
3 after reserved
space is created

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

1 Create reserved space
(only one time)

2 Receive metadata of
reserved space (only
one time)

3 Perform I/O directly
to data servers

Read and write
from/to
checkpoints require
to follow only step
3 after reserved
space is created

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

Application uses
PFS-delegation
interfaces

PFS-delegation uses
MPI-IO API to
communicate with
servers

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Approach - PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

Application uses
PFS-delegation
interfaces

PFS-delegation uses
MPI-IO API to
communicate with
servers

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 8 / 25

Reserving Delegated Storage Space

The reservation process is made by creating
one large logical file across the PFS data
servers

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

� To avoid initial overhead at reservation there are different techniques

• Create a sparse file by writing the last byte of corresponding datafile
(PVFS2)

• Use fallocate (GPFS)

� This process is executed only once
� The size of reserved space should consider:

• Single checkpointing size
• Amount of checkpoints
• Storage policy

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 9 / 25

Data Layout

The layout is specified as a regular file
layout using MPI-IO

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

� PFS-delegation uses the following hints for layout definition:

• striping factor: number of data server involved
• striping unit: stripe size

� PVFS2 implementation uses simple stripe and round robin distribution

MPI info info;

MPI Info set(info, ‘‘striping factor’’, ‘‘4’’);

MPI Info set(info, ‘‘striping unit’’, ‘‘65536’’);

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 10 / 25

Reserved-Space Distribution

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

Metadata Table

offset start
offset end
offset next
revision

� offset start and offset end:
• Specify limits of client’s assigned region
� offset next:
• Specify next valid offset to write a checkpoint
� revision:
• Checkpointing counter

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 11 / 25

Accessing Checkpoints in Delegated Space

PFS-delegation provides interfaces to
applications to write/read checkpoints to
the delegated space

…
Compute Nodes

Metadata Servers Data Servers

… …
RESERVED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-D

Metadata table

Proc. 1’s
checkpoint space

Proc. 2’s
checkpoint space

Proc. n’s
checkpoint space

…

Interface Name Description

PFS write file Perform writes of a checkpoint on
the delegated space

PFS read file Perform reads of last valid check-
point from the delegated space

PFS read file revision Read a specific past checkpoint
stored in the delegated space

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 12 / 25

Single Checkpoint Write Process

1 Read metadata table

2 Get the offset “offset next” (available space)

3 Call MPI-IO functions to do write

4 Update metadata table with new offsets

5 Increase revision number

• Only one process (rank 0) performs lookup and
update to metadata table

• In case of N-N and N-1 modes many processes
update metadata info

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 13 / 25

Single Checkpointing Read Process

1 Read metadata table

2 Get corresponding offset where the data is located

3 Call MPI-IO functions to perform read in parallel

• Only one process (rank 0) performs lookup at
metadata table

• In case of N-N and N-1 modes many processes
update metadata info

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 14 / 25

Experimental Evaluation
Setup

� Evaluation was
performed in our cluster:

• Eleven DELL cluster
nodes

• 2 six-core 2.4GHz
Opteron

• 32GB RAM - 500GB
SAS Disk

• OS: Ubuntu 8.04
Kernel:
2.6.24-16-server

� Benchmark IOR2

Distributed Centralized

Metadata Metadata

Server Server

Node 1 to 4 Meta Servers

Node 4 4 Data Servers 4 Data Servers

Node 5 1 Meta Server

Node 6 to 16 to 128 16 to 128

Node 11 Processes Processes

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 15 / 25

Centralized Metadata Server
Checkpointing Time

0

2

4

6

8

10

12

14

16

18

20

16 32 64 128

R
u

n
ti

m
e

(S
ec

co
n

d
s)

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process � Performance is similar
with less than 64 clients

� With 128 clients
PFS-delegation is:

• 7% faster than
“shared-file”

• 10% faster than
“file-per-process”

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 16 / 25

Centralized Metadata Server
Checkpointing Time

0

2

4

6

8

10

12

14

16

18

20

16 32 64 128

R
u

n
ti

m
e

(S
ec

co
n

d
s)

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process � Performance is similar
with less than 64 clients

� With 128 clients
PFS-delegation is:

• 7% faster than
“shared-file”

• 10% faster than
“file-per-process”

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 16 / 25

Centralized Metadata Server
Total number of Metadata Operations

33 65 129
257 188

348

669

1310

608

1034

2376

4132

16 32 64 128

N
u

m
b

er
 o

f
M

es
sa

ge
s

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

� PFS-delegation
metadata operations
reduced to:

• 7% of
“file-per-process”

• 20% of “shared
file”

� With 128 processes the
metadata operations
are reduced by:

• 1053 compared to
“shared file”

• 3875 compared to
“file-per-process”

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 17 / 25

Centralized Metadata Server
Total number of Metadata Operations

33 65 129
257 188

348

669

1310

608

1034

2376

4132

16 32 64 128

N
u

m
b

er
 o

f
M

es
sa

ge
s

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

� Metadata operations
reduced to:

• “shared-file” is
30% of
“file-per-process”

• “PFS-delegation”
is 20% of “shared
file”

� With 128 processes the
metadata operations
are reduced by:

• 1053 compared to
“shared file”

• 3875 compared to
“file-per-process”

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 17 / 25

Centralized Metadata Server
Different metadata operations with 128 processes

128 128

0 1 0

128

1146

9 18 9

128

918

1122

813

1152

GETCONFIG GETATTR CREATE LOOKUP CRDIRENT

N
u

m
b

er
 o

f
M

e
ss

ag
es

Metadata Operations

PFS-Delegation

Shared-File

File-Per-Process

� PFS-delegation’s
“GETATTR” is less
than the other two
methods

• Triggered by:
create, read, and
write

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 18 / 25

Centralized Metadata Server
Different metadata operations with 128 processes

128 128

0 1 0

128

1146

9 18 9

128

918

1122

813

1152

GETCONFIG GETATTR CREATE LOOKUP CRDIRENT

N
u

m
b

er
 o

f
M

e
ss

ag
es

Metadata Operations

PFS-Delegation

Shared-File

File-Per-Process

� PFS-delegation’s
“GETATTR” is less
than the other two
methods

• Triggered by:
create, read, and
write

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 18 / 25

Distributed Metadata Server
Checkpointing Time

� Performance is similar
with less than 32 clients

� With 128 clients
PFS-delegation is:

• 22% faster than
“shared-file”

• 31% faster than
“file-per-process” 0

2

4

6

8

10

12

14

16

16 32 64 128

R
u

n
ti

m
e

(S
ec

co
n

d
s)

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 19 / 25

Distributed Metadata Server
Checkpointing Time

� Performance is similar
with less than 32 clients

� With 128 clients
PFS-delegation is:

• 22% faster than
“shared-file”

• 31% faster than
“file-per-process” 0

2

4

6

8

10

12

14

16

16 32 64 128

R
u

n
ti

m
e

(S
ec

co
n

d
s)

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 19 / 25

Distributed Metadata Server
Total number of Metadata Operations

� More metadata
operations than
centralized metadata
server

� Metadata operations
reduced to:

• 20% of “shared
file”

• 10% of
“file-per-process”

81 161 321
641 563 733

2397

3667

1008

2016

3830

8114

16 32 64 128

N
u

m
b

er
 o

f
 M

es
sa

ge
s

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 20 / 25

Distributed Metadata Server
Different metadata operations with 128 processes

� PFS-delegation’s
“GETATTR” is much
less than shared-
file/file-per-process

640

128
0 1 0

640

3119

9 18 9

640

4500

1152

798

1152

GETCONFIG GETATTR CREATE LOOKUP CRDIRENT

N
u

m
b

er
 o

f
M

e
ss

ag
es

Metadata Operations

PFS-Delegation

Shared-File

File-Per-Process

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 21 / 25

Distributed Metadata Server
Different metadata operations with 128 processes

� PFS-delegation’s
“GETATTR” is much
less than shared-
file/file-per-process

640

128
0 1 0

640

3119

9 18 9

640

4500

1152

798

1152

GETCONFIG GETATTR CREATE LOOKUP CRDIRENT

N
u

m
b

er
 o

f
M

e
ss

ag
es

Metadata Operations

PFS-Delegation

Shared-File

File-Per-Process

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 21 / 25

Related Work

� PLFS - Parallel Log structure File System

• Map the access pattern from N-1 to N-N
• Create interposition layer between application and PFS
• Implements access transparently by providing ad plfs MPI-IO

driver

� GFS - Google File System

• Handle large workloads
• Perform better with appending-only writes

� LWFS - Light-Weight File System

• No traditional PFS services
• Provide secure access and high-level services

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 22 / 25

Conclusions

� PFS-delegation is a checkpointing technique that reduces the
overhead at metadata management

• Require no modifications on PFS
• Provide simple interfaces to applications

� A prototype on PVFS2 was implemented with good results
compared to shared-file and file-per-process

• 7% and 10% speedup using centralized metadata server
• 22% and 31% speedup using distributed metadata server

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 23 / 25

Future Work

� Implement PFS-delegation MPI-IO driver to provide full
transparency to application

� Integrate PFS-delegation capabilities to use netCDF/HDF5 to
structure the reserved space

� Scale up the number of clients/server for future experiments

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 24 / 25

Acknowledgment

This research is sponsored by National Science
Foundation under grant CCF-0938045 and
Department of Homeland Security under grant
2010-ST-062-00039

Questions?
WEB: http://visa.cis.fiu.edu

darte003@fiu.edu ming@cs.fiu.edu

Background Checkpointing Modes Approach Experimental Evaluation Conclusions 25 / 25

	Background
	Checkpointing Modes
	Approach
	Experimental Evaluation
	Conclusions

